图片搜索

   粘贴图片网址
LPCANet: Classification of Laryngeal Cancer Histopathological Images Using a CNN with Position Attention and Channel Attention Mechanisms
Zhou, Xiaoli1; Tang, Chaowei1; Huang, Pan1; Mercaldo, Francesco2; Santone, Antonella2; Shao, Yanqing3
2021-12
发表期刊Interdisciplinary Sciences-Computational Life Sciences
ISSN1913-2751
EISSN1867-1462
卷号13期号:4页码:666-682
摘要Laryngeal cancer is one of the most common malignant tumors in otolaryngology, and histopathological image analysis is the gold standard for the diagnosis of laryngeal cancer. However, pathologists have high subjectivity in their diagnoses, which makes it easy to miss diagnoses and misdiagnose. In addition, according to a literature search, there is currently no computer-aided diagnosis (CAD) algorithm that has been applied to the classification of histopathological images of laryngeal cancer. Convolutional neural networks (CNNs) are widely used in various other cancer classification tasks. However, the potential global and channel relationships of images may be ignored, which will affect the feature representation ability. Simultaneously, due to the lack of interpretability, the results are often difficult to accept by pathologists. we propose a laryngeal cancer classification network (LPCANet) based on a CNN and attention mechanisms. First, the original histopathological images are sequentially cropped into patches. Then, the patches are input into the basic ResNet50 to extract the local features. Then, a position attention module and a channel attention module are added in parallel to capture the spatial dependency and the channel dependency, respectively. The two modules produce the fusion feature map to enhance the feature representation and improve network classification performance. Moreover, the fusion feature map is extracted and visually analyzed by the grad-weighted class activation map (Grad_CAM) to provide a certain interpretability for the final results. The three-class classification performance of LPCANet is better than those of the five state-of-the-art classifiers (VGG16, ResNet50, InceptionV3, Xception and DenseNet121) on the two original resolutions (534 * 400 and 1067 * 800). On the 534 * 400 data, LPCANet achieved 73.18% accuracy, 74.04% precision, 73.15% recall, 72.9% F1-score, and 0.8826 AUC. On the 1067 * 800 data, LPCANet achieved 83.15% accuracy, 83.5% precision, 83.1% recall, 83.1% F1-score, and 0.9487 AUC. The results show that LPCANet enhances the feature representation by capturing the global and channel relationships and achieves better classification performance. In addition, the visual analysis of Grad_CAM makes the results interpretable, which makes it easier for the results to be accepted by pathologists and allows the method to become a second tool for auxiliary diagnosis.
关键词Laryngeal cancer classification Histopathological images Position attention mechanism Channel attention mechanism Grad_CAM Interpretability
DOI10.1007/s12539-021-00452-5
收录类别SCIE
语种英语
WOS研究方向Mathematical & Computational Biology
WOS类目Mathematical & Computational Biology
WOS记录号WOS:000662905700002
出版者SPRINGER HEIDELBERG
原始文献类型Article
出版地HEIDELBERG
引用统计
被引频次:23[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://ir.cqcet.edu.cn/handle/39TD4454/3650
专题重庆电子科技职业大学
作者单位1.Chongqing Univ, Sch Microelect & Commun Engn, Chongqing 400044, Peoples R China;
2.Univ Molise, Dept Med & Hlth Sci Vincenzo Tiberio, I-86100 Campobasso, Italy;
3.Chongqing Coll Elect Engn, Commun Engn Dept, Chongqing 401331, Peoples R China
推荐引用方式
GB/T 7714
Zhou, Xiaoli,Tang, Chaowei,Huang, Pan,et al. LPCANet: Classification of Laryngeal Cancer Histopathological Images Using a CNN with Position Attention and Channel Attention Mechanisms[J]. Interdisciplinary Sciences-Computational Life Sciences,2021,13(4):666-682.
APA Zhou, Xiaoli,Tang, Chaowei,Huang, Pan,Mercaldo, Francesco,Santone, Antonella,&Shao, Yanqing.(2021).LPCANet: Classification of Laryngeal Cancer Histopathological Images Using a CNN with Position Attention and Channel Attention Mechanisms.Interdisciplinary Sciences-Computational Life Sciences,13(4),666-682.
MLA Zhou, Xiaoli,et al."LPCANet: Classification of Laryngeal Cancer Histopathological Images Using a CNN with Position Attention and Channel Attention Mechanisms".Interdisciplinary Sciences-Computational Life Sciences 13.4(2021):666-682.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Zhou-2021-LPCANet_ C(7482KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 下载
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhou, Xiaoli]的文章
[Tang, Chaowei]的文章
[Huang, Pan]的文章
百度学术
百度学术中相似的文章
[Zhou, Xiaoli]的文章
[Tang, Chaowei]的文章
[Huang, Pan]的文章
必应学术
必应学术中相似的文章
[Zhou, Xiaoli]的文章
[Tang, Chaowei]的文章
[Huang, Pan]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Zhou-2021-LPCANet_ Classification of Laryngeal.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。