Research and analysis for real-time streaming big data based on controllable clustering and edge computing algorithm | |
Li, Xiang1![]() | |
2019 | |
发表期刊 | IEEE Access
![]() |
ISSN | 2169-3536 |
卷号 | 7页码:171621-171632 |
摘要 | Aiming at the low efficiency, poor performance and weak stability of traditional clustering algorithms and the poor response to the processing of massive data in real time, a real-time streaming controllable clustering edge computing algorithm (SCCEC) is proposed. First, the data tuples that arrive in real time are pre-processed by coarse clustering, the number of clusters, and the position of the center point are determined, and a set formed by macro clusters having differences is formed. Secondly, the macro cluster set obtained by the coarse clustering is sampled, and then K-means parallel clustering is performed with the largest and smallest distances, thereby realizing fine clustering of data. Finally, the completely clustering algorithm and the edge-computing algorithm are combined to realize the clustering analysis under the edge-computing framework. The experimental results show that the proposed algorithm has the advantages of high efficiency, good quality, and strong stability. It can quickly obtain the global optimal solution, and deal with massive data with high real-time performance. It can be used for real-time streaming data aggregation under big data background. © 2013 IEEE. |
关键词 | Algorithms Big data Cluster analysis Edge computing Efficiency Metadata Random access storage Real time systems Clustering Computing algorithms Computing frameworks Global optimal solutions Real time performance Real time streaming Research and analysis Traditional clustering |
DOI | 10.1109/ACCESS.2019.2955992 |
收录类别 | EI ; SCIE |
语种 | 英语 |
WOS研究方向 | Computer Science ; Engineering ; Telecommunications |
WOS类目 | Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications |
WOS记录号 | WOS:000509374200022 |
出版者 | Institute of Electrical and Electronics Engineers Inc., United States |
EI入藏号 | 20200408087669 |
EI分类号 | 722.1 Data Storage, Equipment and Techniques ; 722.4 Digital Computers and Systems ; 723 Computer Software, Data Handling and Applications ; 723.2 Data Processing and Image Processing ; 913.1 Production Engineering |
原始文献类型 | Journal article (JA) |
出版地 | PISCATAWAY |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://ir.cqcet.edu.cn/handle/39TD4454/3098 |
专题 | 人工智能与大数据学院 |
作者单位 | 1.School of Artificial Intelligence and Big Data, Chongqing College of Electronic Engineering, Chongqing; 401331, China; 2.School of Automation, Nanjing University of Information Science and Technology, Nanjing; 210044, China |
第一作者单位 | 重庆电子科技职业大学 |
推荐引用方式 GB/T 7714 | Li, Xiang,Zhang, Zijia. Research and analysis for real-time streaming big data based on controllable clustering and edge computing algorithm[J]. IEEE Access,2019,7:171621-171632. |
APA | Li, Xiang,&Zhang, Zijia.(2019).Research and analysis for real-time streaming big data based on controllable clustering and edge computing algorithm.IEEE Access,7,171621-171632. |
MLA | Li, Xiang,et al."Research and analysis for real-time streaming big data based on controllable clustering and edge computing algorithm".IEEE Access 7(2019):171621-171632. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Li-2019-Research and(5652KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | 浏览 下载 | |
Li-2019-Research and(5652KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | 浏览 下载 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Li, Xiang]的文章 |
[Zhang, Zijia]的文章 |
百度学术 |
百度学术中相似的文章 |
[Li, Xiang]的文章 |
[Zhang, Zijia]的文章 |
必应学术 |
必应学术中相似的文章 |
[Li, Xiang]的文章 |
[Zhang, Zijia]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论