图片搜索

   粘贴图片网址
Research and analysis for real-time streaming big data based on controllable clustering and edge computing algorithm
Li, Xiang1; Zhang, Zijia2
2019
发表期刊IEEE Access
ISSN2169-3536
卷号7页码:171621-171632
摘要Aiming at the low efficiency, poor performance and weak stability of traditional clustering algorithms and the poor response to the processing of massive data in real time, a real-time streaming controllable clustering edge computing algorithm (SCCEC) is proposed. First, the data tuples that arrive in real time are pre-processed by coarse clustering, the number of clusters, and the position of the center point are determined, and a set formed by macro clusters having differences is formed. Secondly, the macro cluster set obtained by the coarse clustering is sampled, and then K-means parallel clustering is performed with the largest and smallest distances, thereby realizing fine clustering of data. Finally, the completely clustering algorithm and the edge-computing algorithm are combined to realize the clustering analysis under the edge-computing framework. The experimental results show that the proposed algorithm has the advantages of high efficiency, good quality, and strong stability. It can quickly obtain the global optimal solution, and deal with massive data with high real-time performance. It can be used for real-time streaming data aggregation under big data background. © 2013 IEEE.
关键词Algorithms Big data Cluster analysis Edge computing Efficiency Metadata Random access storage Real time systems Clustering Computing algorithms Computing frameworks Global optimal solutions Real time performance Real time streaming Research and analysis Traditional clustering
DOI10.1109/ACCESS.2019.2955992
收录类别EI ; SCIE
语种英语
WOS研究方向Computer Science ; Engineering ; Telecommunications
WOS类目Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications
WOS记录号WOS:000509374200022
出版者Institute of Electrical and Electronics Engineers Inc., United States
EI入藏号20200408087669
EI分类号722.1 Data Storage, Equipment and Techniques ; 722.4 Digital Computers and Systems ; 723 Computer Software, Data Handling and Applications ; 723.2 Data Processing and Image Processing ; 913.1 Production Engineering
原始文献类型Journal article (JA)
出版地PISCATAWAY
引用统计
被引频次:5[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://ir.cqcet.edu.cn/handle/39TD4454/3098
专题人工智能与大数据学院
作者单位1.School of Artificial Intelligence and Big Data, Chongqing College of Electronic Engineering, Chongqing; 401331, China;
2.School of Automation, Nanjing University of Information Science and Technology, Nanjing; 210044, China
第一作者单位重庆电子科技职业大学
推荐引用方式
GB/T 7714
Li, Xiang,Zhang, Zijia. Research and analysis for real-time streaming big data based on controllable clustering and edge computing algorithm[J]. IEEE Access,2019,7:171621-171632.
APA Li, Xiang,&Zhang, Zijia.(2019).Research and analysis for real-time streaming big data based on controllable clustering and edge computing algorithm.IEEE Access,7,171621-171632.
MLA Li, Xiang,et al."Research and analysis for real-time streaming big data based on controllable clustering and edge computing algorithm".IEEE Access 7(2019):171621-171632.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Li-2019-Research and(5652KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 下载
Li-2019-Research and(5652KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 下载
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Li, Xiang]的文章
[Zhang, Zijia]的文章
百度学术
百度学术中相似的文章
[Li, Xiang]的文章
[Zhang, Zijia]的文章
必应学术
必应学术中相似的文章
[Li, Xiang]的文章
[Zhang, Zijia]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Li-2019-Research and Analysis for Real-Time St.pdf
格式: Adobe PDF
文件名: Li-2019-Research and analysis for real-time st.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。