An effective algorithm based on density clustering framework | |
Lu, Jianyun1,2; Zhu, Qingsheng1,3 | |
2017 | |
发表期刊 | IEEE Access
![]() |
ISSN | 2169-3536 |
卷号 | 5页码:4991-5000 |
摘要 | Clustering analysis has the very broad applications on data analysis, such as data mining, machine learning, and information retrieval. In practice, most of clustering algorithms suffer from the effects of noises, different densities and shapes, cluster overlaps, etc. To solve the problems, in this paper, we propose a simple but effective density-based clustering framework (DCF) and implement a clustering algorithm based on DCF. In DCF, a raw data set is partitioned into core points and non-core points by a neighborhood density estimation model, and then the core points are clustered first, because they usually represent the center or dense region of the cluster structure. Finally, DCF classifies the non-core points into initial clusters in sequence. In experiments, we compare our algorithm with Dp and DBSCAN algorithms on synthetic and real-world data sets. The experimental results show that the performance of the proposed clustering algorithm is comparable with DBSCAN and Dp algorithms. © 2013 IEEE. |
关键词 | Cluster analysis Data mining Nearest neighbor search Trees (mathematics) Cluster structure Clustering analysis Density clustering Density estimation Different densities Effective algorithms Minimum spanning trees Reverse k-nearest neighbors |
DOI | 10.1109/ACCESS.2017.2688477 |
收录类别 | EI ; SCIE |
语种 | 英语 |
WOS研究方向 | Computer Science ; Engineering ; Telecommunications |
WOS类目 | Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications |
WOS记录号 | WOS:000402940400109 |
出版者 | Institute of Electrical and Electronics Engineers Inc., United States |
EI入藏号 | 20171903642915 |
EI分类号 | 723 Computer Software, Data Handling and Applications ; 723.2 Data Processing and Image Processing ; 903.1 Information Sources and Analysis ; 921.4 Combinatorial Mathematics, Includes Graph Theory, Set Theory ; 921.5 Optimization Techniques |
原始文献类型 | Journal article (JA) |
出版地 | PISCATAWAY |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://ir.cqcet.edu.cn/handle/39TD4454/3036 |
专题 | 重庆电子科技职业大学 |
作者单位 | 1.College of Computer Science, Chongqing University, Chongqing; 400044, China; 2.Chongqing College of Electronic and Engineering, Chongqing; 401331, China; 3.Chongqing Key Laboratory of Software Theory and Technology, College of Computer Science, Chongqing University, Chongqing; 400044, China |
推荐引用方式 GB/T 7714 | Lu, Jianyun,Zhu, Qingsheng. An effective algorithm based on density clustering framework[J]. IEEE Access,2017,5:4991-5000. |
APA | Lu, Jianyun,&Zhu, Qingsheng.(2017).An effective algorithm based on density clustering framework.IEEE Access,5,4991-5000. |
MLA | Lu, Jianyun,et al."An effective algorithm based on density clustering framework".IEEE Access 5(2017):4991-5000. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Lu-2017-An Effective(7544KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | 浏览 下载 | |
Lu-2017-An effective(7544KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | 浏览 下载 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Lu, Jianyun]的文章 |
[Zhu, Qingsheng]的文章 |
百度学术 |
百度学术中相似的文章 |
[Lu, Jianyun]的文章 |
[Zhu, Qingsheng]的文章 |
必应学术 |
必应学术中相似的文章 |
[Lu, Jianyun]的文章 |
[Zhu, Qingsheng]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论