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ABSTRACT Clustering analysis has the very broad applications on data analysis, such as data mining,
machine learning, and information retrieval. In practice, most of clustering algorithms suffer from the effects
of noises, different densities and shapes, cluster overlaps, etc. To solve the problems, in this paper, we propose
a simple but effective density-based clustering framework (DCF) and implement a clustering algorithm based
on DCF. In DCF, a raw data set is partitioned into core points and non-core points by a neighborhood density
estimation model, and then the core points are clustered first, because they usually represent the center
or dense region of the cluster structure. Finally, DCF classifies the non-core points into initial clusters in
sequence. In experiments, we compare our algorithm with Dp and DBSCAN algorithms on synthetic and
real-world data sets. The experimental results show that the performance of the proposed clustering algorithm
is comparable with DBSCAN and Dp algorithms.

INDEX TERMS Clustering algorithms, reverse k-nearest neighbors, neighborhood density estimation, data
mining, minimum spanning tree.

I. INTRODUCTION
Clustering studies play an important role in many scenarios
of knowledge discovery in databases (KDD), including data
mining, information retrieval and image segmentation. The
goal of clustering algorithms is to partition the dataset into
clusters so that the similarities of objects in the same clus-
ter are maximized and the similarities of objects between
different clusters are minimized [1].

In practice, the clustering results usually suffer from the
effects of dataset characteristics (e.g. noises, overlaps, differ-
ent shapes, densities and sizes) and the limitations of cluster-
ing algorithms (such as many parameters). Thus, it is hard to
find a comprehensive clustering algorithm to cope with all the
situations. For example, partitioning-based clusteringmethod
k-means [2] is fragile to noises because the noises make the
mean value of the cluster change greatly. Another example is
density-basedmethodDBSCAN [3] which is robust to noises,
shapes and densities and can determine the number of clusters
automatically, however, it has two parameters (MinPts, Eps)
that require user to set in practical applications. Furthermore,
DBSCAN is weak to distinguish the significant overlaps
between clusters and sensitive to the variation of density in the
same cluster. Recently, Alex and Alessandro proposed a fast
density-based clustering algorithm named Dp to find cluster

centers [4]. In Dp algorithm, the measure of local density
for points is like to DBSCAN, which uses a distance cutoff
parameter dc to compute the number of points located in the
dc-neighborhood. Besides, it also needs parameterMinPts in
the practice. Note that it is not always reliable and stable to
use one point to represent the cluster center. In our view,
it is more reasonable to utilize core points to represent the
characteristics of a cluster.

To improve the robustness of clustering algorithm in prac-
tice, in this paper we propose a Density-based Clustering
Framework (DCF) and implement a clustering algorithm
based on DCF to validate the clustering results. In DCF, a
raw dataset is firstly partitioned into core points and non-core
points by a neighborhood density estimation model. Then
initial clustering operation is carried out for the core points
which usually represent the center or dense region of clusters.
Finally, non-core points are classified into initial clusters in a
priority sequence. We evaluate our method on synthetic and
real-world datasets. The experimental results show that the
proposed algorithm achieves comparable performance with
DBSCAN and Dp algorithms.

The remainder of the paper is organized as follows.
In Section II, we briefly review the related work of clustering
analysis. In Section III, we give the density-based clustering
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framework and discuss its work process in detail. A clustering
algorithm based onDCF is developed in Section IV. SectionV
shows the reports of the experiments. The paper is concluded
in Section VI.

II. RELATED WORK
Clustering analysis has a wide application fields such as
data mining, image segmentation and community network.
For several decades, many of clustering algorithms have
been proposed. According to different methodology, these
clustering algorithms are loosely divided into five cate-
gories: partitioning-based, hierarchical-based, density-based,
graph-based and model-based algorithms [5].

Partitioning-based clustering algorithms partition a dataset
into several clusters by the distance from the point to the
cluster center but the number of output clusters needs expert
or user to specify. The advantage of this kind of clustering
algorithms is that it is simple and efficient. However, the
clustering results are susceptible to noises and non-convex
shape of data distribution. Typical algorithms of this category
are k-means and its variants [6], [7]. Fuzzy c-means [8] is one
of fuzzy clustering algorithms that can assign a data point to
all clusters with a certain degree of membership.

Hierarchical-based clustering algorithms usually obtain a
clustering structure of the dataset called dendrogram which
is a hierarchical tree structure showing the inner links of
objects. The dendrogram can be created by agglomerating
(considering each object as a cluster) or dividing (consider-
ing the whole dataset as a cluster). On the basis of linkage
criterion, there are single-link and complete-link hierarchi-
cal clustering algorithms [9]. The drawback of this kind
of algorithms is that it is computationally prohibitive when
they construct a dendrogram for a large dataset. Xu, et al.
proposed a density peak based hierarchical clustering
method (DenPEHC), which generates clusters directly on
each possible clustering layer, and introduces a grid granu-
lation framework to enable DenPEHC to cluster large-scale
and high-dimensional (LSHD) datasets [10].

DBSCAN and Dp algorithms usually use a function model
to estimate the local density for each object in a dataset.
DBSCAN classifies objects into three types (i.e., core objects,
border objects and outliers) by the number of neighbors
contained in the Eps neighborhood. Besides, the NBC [11]
algorithm uses the ratio of reverse k-nearest neighbors to
k-nearest neighbors to measure objects’ local density.
However, DBSCAN or NBC cannot detect the significant
overlaps between clusters and makes a mistake in clustering.
Recently, a fast density-based clustering algorithm called Dp
is proposed in [4], which uses dc-neighborhood to estimate
local density ρ for points and takes δ as a function of ρ to find
cluster center. Zhu, et al. proposed a density-ratio clustering
algorithm,which can identify and analyze the condition under
which the density-based clustering algorithms fail [12]. But
ReCon-DBSCAN algorithm needs one additional parame-
ter (η) in DBSCAN and ReScale-DBSCAN needs two addi-
tional parameters (η and ψ).

Graph-based clustering algorithms partition data into
clusters based on a graph (such as kNN graph, MST graph).
In the graph, vertexes and the weights of edges represent
objects and similarities between objects respectively. For
example, MST-based [13] clustering algorithms find the
k − 1 largest weights in the MST graph and remove them
to form k clusters. The CHAMELEON clustering algo-
rithm [14] is based on kNN graph, which firstly splits the
kNN graph into sub-graphs, and then merges sub-graphs to
build a hierarchical structure according to a dynamic mod-
elling. Gan, et al. proposed a graph-based clustering algo-
rithm called ‘‘probability propagation’’, which can identify
clusters with spherical shapes and non-spherical shapes [15].

Model-based clustering algorithms assume sample obser-
vations arise from a distribution that is a mixture of two or
more components and each component in the mixture is a
cluster. These models include Gaussian model [16], Latent
Dirichlet Allocation [17], etc. The most used expectation-
maximization (EM) algorithm [18] is to infer the parameters
in a mixture of Gaussian models. However, EM algorithm
suffers from the slow convergence rate and the possibility of
a local optimum. The major disadvantages of model-based
clustering algorithms are that they are sensitive to the selec-
tion of model parameters at first and the number of clusters.

III. CLUSTERING FRAMEWORK
As we know, clustering algorithms usually suffer from the
effects of noises, cluster overlaps, different densities, sizes
and shapes. Besides, none of the available clustering algo-
rithms can solve all the problems in practice. The trend
of cluster analysis is combining the advantages of different
clustering algorithms to achieve desired results in engineering
application [19]. For this purpose, we propose a density-based
clustering framework (DCF) which can combine different
clustering algorithms to obtain better clustering results. We
show the internal structures of the DCF in Fig.1. The DCF
mainly contains four modules: density partition, initial clus-
tering, ordering and partition clustering. For clarity, they are
pointed out by A, B, C and D in Fig.1.

We introduce the workflow of DCF as follows:
1) Partitioning a dataset into core points and non-core points
by a neighborhood density estimation model. 2) Clustering
the core points to obtain the initial clusters. 3) Building
a priority sequence for non-core points. 4) Classifying the
non-core points into the initial clusters in sequence. Next, we
will describe each module.

A. DENSITY PARTITION
In this module, the aim is to partition the D into core points
and non-core points using neighborhood density estimation.
In practice, non-core points (e.g. noises and border points)
usually affect the clustering results. Therefore, it is neces-
sary to remove them temporarily before clustering. So far,
neighborhood density estimation is an effective measure to
accomplish this goal such as the way of that used in LOF [20],
INFLO [21], IP [22], etc. So, the D is not difficult to be

4992 VOLUME 5, 2017



J. Lu, Q. Zhu: Effective Algorithm Based on DCF

FIGURE 1. The density-based clustering framework.

partitioned into two sets through a neighborhood density
threshold. One set is core points with higher neighborhood
density and the other set contains non-core points with lower
neighborhood density. For a large dataset or serious overlaps,
we can execute density partition more times to find out core
points.

B. INITIAL CLUSTERING
After the operation of density partition, the dataset D will
be divided into several sets. However, among them, only
one set includes core points and the remaining sets contain
non-core points. Intuitively, the core points which represent
cluster structures are separated distinctly. If we use clustering
algorithm on the core points, it will achieve better clustering
results. In this module, we can apply K -means, DBSCAN
or MST clustering algorithms to obtain the initial clusters
because these algorithms are simple and effective.

C. ORDERING
In fact, how to classify non-core points into initial clusters
has an influence on the final cluster shape. Intuitively, we
should classify the non-core points into initial clusters in a
priority sequence. This module provides a sorting mechanism
for non-core points. A simple way to build a priority sequence
is to use neighborhood density of non-core points.

D. PARTITION CLUSTERING
To obtain the final clustering results, the last step is to classify
the non-core points into the initial clusters in sequence. This
module needs design a function to measure the similarity
between the non-core points and the initial clusters. Certainly,
we can use some existed similarity measures such as nearest
neighbor, shared nearest neighbors [23] or other classifier
algorithms.

IV. A CLUSTERING ALGORITHM BASED ON DCF
In this section, we implement a clustering algorithm based on
the DCF to validate the clustering results.

A. NEIGHBORHOOD DENSITY ESTIMATION
We use reverse k-nearest neighborhood (RkNN) [24] as the
neighborhood density estimation model. RkNN is not only
simple and fast for computing, but also effective to evaluate

the local density. It is successfully used in hubs and outliers
detection. The definition of RkNN is given as follows.
Definition 1 (Reverse k-Nearest Neighborhood of a

Point p): In a data set D and given k, reverse k-nearest
neighborhood of a point p is defined as:

RkNN (p) = {q|p ∈ kNN (q), q 6= p, q ∈ D} (1)

In equation (1), where kNN(q) is k-nearest neighborhood
of the point q. If the point p has a big size of RkNN, it
indicates that p appears more in other points’ k-nearest neigh-
borhood and it is likely a core point, and vice versa. We give
the definition of neighborhood density by normalizing the
number of RkNN.
Definition 2 (Neighborhood Density of a Point q): In a

dataset D and given k, the neighborhood density (ND) of a
point q is defined as:

ND(q) =
|RkNN (q)| −min(|RkNN (o)|)

max(|RkNN (o)|)−min(|RkNN (o)|)
, q, o ∈ D

(2)

Definition 3 (Density Partition of a Dataset D): Given
a dataset D, a density partition of D with a neighborhood
density threshold T satisfying that:

D = CPND(p)>T (p) ∪ NCPND(q)≤T (q),
p, q ∈ D, T ∈ (0, 1)

∅ = CPND(p)>T (p) ∩ NCPND(q)≤T (q),
p, q ∈ D, T ∈ (0, 1)

(3)

In equation (3), whereCPND(p)>T (p) is a set including core
points with higher neighborhood density than the threshold T ,
NCPND(q)≤T (q) contains non-core points whose neighbor-
hood densities are lower than or equal to the threshold T . For
a large dataset or clusters with serious overlaps, we can repeat
density partition on the core points set. The detailed density
partition algorithm is showed in Fig.2.

B. MINIMUM SPANNING TREE CLUSTERING
Intuitively, the core points are dense regions of clusters
and usually represent cluster structures. We apply minimum
spanning tree (MST) algorithm to the core points to obtain
the initial clusters because MST can discover clusters with
different shapes and sizes. MST is a subset of the edges of
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FIGURE 2. The density partition algorithm.

FIGURE 3. The initial clustering algorithm for core-points.

an edge-weighted connected undirected graph that connects
all the vertices, without any cycles and with the minimum
total edge weight. Prim’s algorithm and Kruskal’s algorithm
are two common used methods to obtain MST. The initial
clustering algorithm is showed in Fig.3. We use Euclidean
distance as the weight of edge. To save storage, sparse matrix
is built based on low triangular matrix. After MST obtained,
the c−1 largest weighted edges in MST are removed, and the
c disconnected parts are returned as initial clustering.

C. ORDERING MECHANISM
Intuitively, the order of classifying the non-core points into
initial clusters can affect the final cluster shape. Therefore,
we develop a priority sequence for non-core points before

classifying. The ordering mechanism of non-core points
considers not only the neighborhood density but also the
neighborhood compactness.
Definition 4 (Neighborhood Compactness of a Point p):

Given a dataset D and k, the neighborhood compactness of a
point p is defined as:

NCIS (p) =
|IS|∑

q∈IS
‖p−q‖

, IS = kNN (p) ∪ RkNN (p), p ∈ D

(4)

In equation (4), where IS represents the influence space of
point p, i.e. the union of k-nearest neighborhood and reverse
k-nearest neighborhood of p. The larger p has the value of
NCIS (p), the more compact neighborhood p owns.
Definition 5 (The Ordering Mechanism for Non-Core

Points): Given a non-core point set NCP, p and q belong to
NCP, p has a priority to q for classifying to initial clusters if
p satisfies that:{
ND(p) > ND(q), or
ND(p) = ND(q) ∧ NC (p) > NC (q) , p, q ∈ NCP

(5)

We emphasize the ordering mechanism for non-core points
instead of how to compute the value of ND and NC. We give
our ordering algorithm for non-core points in Fig.4.

FIGURE 4. The ordering algorithm for non-core points.

D. NEAREST NEIGHBOR CLASSIFIER
In this module, we classify the non-core points into initial
clusters by the nearest neighbor similarity measure because
it is efficient and popular in machine learning. Fig.5 shows
the partitioning clustering algorithm.

E. TIME COMPLEXITY ANALYSIS
The time complexity of our algorithm is composed of four
parts. In density partition, the time complexity of searching
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FIGURE 5. The partition clustering algorithm.

kNN is O(nlogn) by k-d tree. For initial clustering part,
supposing that the size of core points set is m, the time
complexity is O(m ∗ m + m logm + bm), where m < n and
b is a constant. For last two modules, the time complexity
is the same as O((n − m)∗m), where (n − m) is the size of
non-core points set. Overall, the worst time complexity of our
algorithm is O(n2).

V. EXPERIMENTAL RESULTS
In this section, both synthetic and real-world datasets are
employed to evaluate the performance of the proposed clus-
tering algorithm.

FIGURE 6. The comparison of dc-neighborhood and reverse k nearest
neighborhood. (a) dc-neighborhood. (b) reverse k nearest neighborhood.

A. PERFORMANCE OF NEIGHBORHOOD
DENSITY ESTIMATION
Generally, we use distance neighborhood to estimate the local
density. However, it needs to set the minimum number of data
points like DBSCAN and Dp algorithms. In Fig.6(a), there
is an example of distance neighborhood. C1 and C2 are two
clusters, data point p belongs to C1 and point q belongs to
C2. We note that p has 3 neighbors and q has 0 neighbor
when the distance is set to dc. To recognize cluster C2, we
should increase the value of dc or set the minimum number

of data points in dc neighborhood. Fig.6(b) shows an example
of reverse k nearest neighborhood when k = 2. We can see
that point p in a dense region of C1 has 3 reverse nearest
neighbors, and point q as a core point of C2 also has 3 reverse
nearest neighbors though it is in a sparse area. In other word,
reverse nearest neighbors of a point p not only convey the
distances between p and the surrounding data points, but also
reflect the number of data points around p. In practice, it is
easy to compute the number of RkNN.

FIGURE 7. The quartile of local density of a synthetic 2-d dataset.

We conduct an experiment to evaluate the performance of
the local density estimation model. The experimental dataset
has 2000 samples embedded in 2-d space [4] and it is showed
in Fig.7A. In experiments, we compute the local density of
dataset. The 1/4 quartile of local density is showed in Fig.7B,
where the points with red color mean that their local density
are higher than other points. In a similar manner, the 1/2 and
3/4 quartile of local density are given in Fig.7C and Fig.7D.
Especially, we see that half of dataset points with higher
local density can clearly describe the cluster shape in Fig.7B.
In Fig.7D, the 1/4 data points with higher local density can
identify the cluster structure more accurately, even if the size
of the cluster is smaller than that of other clusters, besides,
for the cluster with oblong shape, red points are properly
scattered across the cluster. In conclusion, the higher local
density a point has, the closer it is away from the cluster
center or dense region. The core points can represent cluster
structure.

B. THE CHOICE OF PARAMETER k
In this section, we discuss the choice of parameter k influ-
enced on the number of RkNN. The test dataset is showed in
Fig.8A including 152 data points. It has a ‘V’ shape distribu-
tion, the center is dense region and the two ends are relatively
sparse regions. As shown in Fig.8B, the number of RkNN is
increased when k takes different values k = 3, 7, 11, 15. It is
important that the shape of RkNN curves keeps basically the
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FIGURE 8. The choice of parameter k influenced on the number of RkNN.

same. It illustrates that the increase of the number of RkNN
is relatively stable rather than irregular. More specifically, in
Fig.8B, the number of RkNN of the data point a is 4, 9, 13,
24 when k = 3, 7, 11, 15, respectively. We denote data points
in Fig.8B by

a(R3NN = 4, R7NN = 9, R11NN = 13, R15NN = 24),

b(R3NN = 1, R7NN = 4, R11NN = 5, R15NN = 7),

c(R3NN = 0, R7NN = 4, R11NN = 6, R15NN = 8),

d(R3NN = 4, R7NN = 9, R11NN = 13, R15NN=22),

e(R3NN = 2, R7NN = 4, R11NN = 5, R15NN = 8),

f(R3NN = 2, R7NN = 10, R11NN = 16, R15NN=23),

g(R3NN = 0, R7NN = 4, R11NN = 6,R15NN = 7).

We can find that the numbers of RkNN of the points a, d
and f are increased rapidly but the numbers of RkNN of the
points b, c, e and g are increased slowly. From Fig.8A, the
points a and f are in relatively dense regions, d is in a very
dense region, b, c, e and g are in sparse regions. In Fig.8A,
we can see that the points a and f have more RkNNs than
the point d when k = 15. The reason is that it needs a larger
dc neighborhood to find 15 nearest neighbors for the points in
sparse regions. Thus, the points a and f appear in more points’
neighborhood and have more RkNNs.

C. PERFORMANCE ON OUTLIERS DETECTION
In this section, we conduct an experiment to evaluate the
performance of our neighborhood density estimation method
for outlier detection. The experiment dataset contains two
clusters C1 and C2 with different sizes and densities, two
local outliers p and q, a global outlier r and an outlying
cluster C3 (see Fig.9(a)).

FIGURE 9. (a) A synthetic dataset contained outliers. (b) Contour map of
the number of RkNNs.

Fig.9(b) shows the dataset’s contour map of the number of
RkNNs when k=8. We can see that the outliers p, q and r
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TABLE 1. Overview of the synthetic datasets used in experiments.

have the least number of RkNNs than other points. The
points in C3 own less number of RkNNs than the points in
C1 and C2. Furthermore, the border points of C1 and C2
usually have less number of RkNNs than that of the inner
points of C1 and C2. In our initial clustering, the points with
more number of RkNNs are kept and other points (e.g. noises,
outliers, border points) are removed temporarily. Therefore,
our clustering algorithm is robust to the outliers.

D. PERFORMANCE ON SYNTHETIC DATASETS
In this section, we compare our algorithm with Dp and
DBSCAN clustering algorithms on synthetic datasets. The
detailed descriptions of synthetic datasets are given in
Table 1. The explanation of experimental setup for the cluster
algorithms is as follows.
DBSCAN: In DBSCAN algorithm [3], it requires user to set

two parametersMinPts and Eps.MinPtsmeans the minimum
number of points in Eps neighborhood. In experiments, we
set the MinPts from 5 to 15, and adjust the Eps to find the
suitable number of clusters.
Dp: In Dp algorithm [4], it needs user to choose the cluster

centers (i.e. density peaks on the decision graph). However,
in some cases, it is difficult to assign density peaks by the
decision graph. In experiments, the vector of γ [4] is used
to replace the decision graph, and the top C values of γ are
chosen as cluster centers. C is the real number of clusters.
Our Method: There are two parameters k and C in our

algorithm. K is the number of nearest neighbors and C is the
real clusters number. In density partition module, it does not
need user to set the density threshold T , we take median value
of local density as the density threshold.

The clustering results on synthetic datasets of the three
clustering algorithms are showed in Table 2. The first row
shows clustering algorithms, and the first column shows
datasets name. From Table 2, DBSCAN algorithm can detect
noises and identify the different cluster shapes (e.g. datasets
Compound and DS3). However, it is sensitive to overlaps and
density variation of a cluster (e.g. datasets D31 and DS4).
If Eps is too small, one cluster will be separated into two
clusters. If Eps is too big, two clusters will be merged into
one cluster. For Dp algorithm, it works well on the clusters

with convex shapes (e.g. dataset D31) but it cannot identify
the clusters with non-convex shapes (e.g. datasets DS3 and
DS4).We note that representing cluster structure by one point
cannot capture the cluster shape. In our algorithm, cluster is
represented by a set of core points which have high neighbor-
hood density and can describe the cluster structure. Thus, our
algorithm achieves better performance on synthetic datasets.
The advantages of our method are as follows: 1) The number
of RkNN is more effective to detect noises, border and dense
points; 2) Clustering core points firstly eliminates the effects
of cluster overlaps and density variation; 3) Classifying non-
core points into initial clusters in sequence without influence
on the final cluster shape.

E. PERFORMANCE ON REAL-WORLD DATASETS
In this section, we conduct experiments on real datasets [28]
and use two cluster evaluation indexes F1 [29] and rand
index (RI) [30] to compare our algorithm with DBSCAN and
Dp algorithm. The explanations of F1 and RI are as follows.

F1 =
2 ∗ P ∗ R
P+ R

(6)

RI =
TP+ TN

TP+ FP+ TN + FN
(7)

In equation (6), where P = TP/(TP+FP), R =

TP/(TP+FN). TP is the number of true positives, TN is the
number of true negatives, FP is the number of false positives,
and FN is the number of false negatives. Both F1 and RI take
on a value between 0 and 1. The larger the values are, the
better the clustering performance. The experimental results
are showed in Table 3.

From Table 3, DBSCAN achieves the best results on con-
trol dataset. It obtains the highest F1 value and compara-
ble RI value on sonar dataset. It is because that there exist
obvious changes of density in control and sonar datasets.
Besides, since cancer dataset has no significant variation of
density, Dp is easy to find the density peaks and achieves the
best performance on cancer dataset. We see that our method
achieves better performance than Dp algorithm through all
datasets except cancer dataset. For both F1 and RI, our
method exceeds Dp algorithm on four datasets and obtains
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TABLE 2. Compare DBSCAN and Dp with our algorithm on synthetic datasets.

almost the same results of Dp algorithm on seeds dataset.
About wine dataset, our method is not as good as Dp on RI
but it is better than Dp on F1. Compared with DBSCAN, our
method makes better results on five datasets except control

dataset, and achieves comparative results on sonar and control
datasets. Overall, the proposed algorithm is an effective clus-
tering algorithm and achieves better or comparable results
with state of the art clustering algorithms.
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TABLE 3. Compare DBSCAN and Dp with our algorithm on UCI datasets.

F. PERFORMANCE ON OLIVERTTI FACE DATABASE
We also applied our method to Olivetti Face Database [31]
which is a public and popular benchmark for machine learn-
ing algorithms. In experiment, the similarity between two
images was computed by the measure proposed in [32],
we compared our method with Dp algorithm for the first
100 images of Olivetti Face Database, and cited the clustering
results of Dp algorithm [4] in Fig.10. In the figure, faces
with the same color belong to the same cluster, whereas
gray images are not assigned to any clusters. Cluster centers
are labeled with white circles. The clustering results of our
method are showed in Fig.11, where digit on face represents
cluster label, faces with the same digit belong to the same
cluster, faces with green digit are correct clustering, and faces
with red digit are wrong clustering.

FIGURE 10. Clustering results of Dp algorithm on Olivetti Face Database
for the first 100 images. Faces with the same color belong to the same
cluster, whereas gray images are not assigned to any clusters. Cluster
centers are labeled with white circles.

FIGURE 11. Clustering results of our method on Olivetti Face Database
for the first 100 images. Digit on face represents cluster label, faces with
the same digit belong to the same cluster, faces with green digit are
correct clustering, and faces with red digit are wrong clustering.

From the results, Dp algorithm failed to identify 10 cluster
centers. Besides, there are two centers in the same cluster
in Fig.10. On the other hand, Dp algorithm has an unsat-
isfactory clustering accuracy because a small part of face
images of each subject is correct clustering. Owing to the

variation of facial expression and posture, face images have
different structures. In consequence, it is inappropriate to use
a face image to represent one subject. Our method achieves
better performance in Fig.11, where 10 clusters are recog-
nized correctly. We see that 5 subjects (i.e., 1st, 2nd, 6th, 7th,
8th subjects) can be recognized unambiguously and the 10th

cluster is pure. For the remaining 3rd, 4th, 5th, 9th clusters, the
clustering sizes are 3, 15, 13, 11, and 2, 9, 10, 8 images are
correct clustering, respectively.

TABLE 4. Compare Dp with our algorithm on Olivetti face database.

In addition, we compare Dp algorithm with our method on
the whole Olivetti Face Database, and the results are showed
in Table 4. We produced four databases from Olivetti Face
Database, which are DS1 (i.e. the first 100 images), DS2 (i.e.
the first 200 images), DS3 (i.e. the first 300 images), and
DS4 (i.e. the total 400 images), respectively. Since it has high
similarity between faces, we adjust the density threshold T to
the upper quartile of ND in density partition module. From
the Table 4, the performance of our method is better than
Dp algorithm especially on the DS1 and DS2. Overall, for
our method, F1 takes on a value 0.8 when the number of
clusters is 10, but the value of F1 drops to 0.55 when the
clusters number reaches to 20. With the increasing of clusters
number, the value ofF1 keeps dropping down.However, there
is almost no change about the value of RI. The reason is that
RI is highly dependent upon the number of clusters, and RI
converges to 1 as the number of clusters increases [33].

VI. CONCLUSION
In this paper, we proposed a simple but effective clustering
algorithm based on density clustering framework, which can
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combine the advantages of different clustering algorithms
to obtain the desired clustering results. In experiments, we
evaluate clustering performance of the proposed algorithm on
synthetic and real-world datasets. The experimental results
show that our method is effective and achieves comparable
performance with DBSCAN and Dp algorithms. Our method
reveals that core points are better to represent cluster struc-
ture. In the future work, we will use the existing clustering
techniques (e.g., k-means, DBSCAN) to fit into the frame-
work to improve their performance and compare DCF with
more other benchmark methods. Furthermore, we will study
the selection of the parameter k in neighborhood estimation
model from the theoretical aspect.
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