图片搜索

   粘贴图片网址
Review of the grey wolf optimization algorithm: variants and applications
Liu, Yunyun1,2; As'arry, Azizan2; Hassan, Mohd Khair2; Hairuddin, Abdul Aziz2; Mohamad, Hesham2
2024-02
发表期刊NEURAL COMPUTING & APPLICATIONS
ISSN0941-0643
EISSN1433-3058
卷号36期号:6页码:2713-2735
摘要One of the most widely referenced Swarm Intelligence (SI) algorithms is the Grey Wolf Optimizer (GWO), which is based on the pack hunting and natural leadership organization of grey wolves. The GWO algorithm offers several significant benefits, including simple implementation, rapid convergence, and superior convergence outcomes, leading to its effective application in diverse fields for solving optimization issues. Consequently, the GWO has rapidly garnered substantial research interest and a broad audience across numerous areas. To better understand the literature on this algorithm, this review paper aims to consolidate and summarize research publications that utilized the GWO. The paper begins with a concise introduction to the GWO, providing insight into its natural establishment and conceptual framework for optimization. It then lays out the theoretical foundation and key procedures involved in the GWO, following which it comprehensively examines the most recent iterations of the algorithm and categorizes them into parallel, modified, and hybridized variations. Subsequently, the primary applications of the GWO are thoroughly explored, spanning various fields such as computer science, engineering, energy, physics and astronomy, materials science, environmental science, and chemical engineering, among others. This review paper concludes by summarizing the key arguments in favour of GWO and outlining potential lines of inquiry in the future research.
关键词GWO Swarm intelligence algorithms Variants Applications
DOI10.1007/s00521-023-09202-8
收录类别SCIE ; EI
语种英语
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:001147954900001
出版者SPRINGER LONDON LTD
EI入藏号20234715103823
原始文献类型Article
引用统计
被引频次:24[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://ir.cqcet.edu.cn/handle/39TD4454/18228
专题重庆电子科技职业大学
作者单位1.Chongqing Coll Elect Engn, Sch Intelligent Mfg & Automobile, Chongqing, Peoples R China;
2.Univ Putra Malaysia, Fac Engn, Seri Kembangan, Malaysia
推荐引用方式
GB/T 7714
Liu, Yunyun,As'arry, Azizan,Hassan, Mohd Khair,et al. Review of the grey wolf optimization algorithm: variants and applications[J]. NEURAL COMPUTING & APPLICATIONS,2024,36(6):2713-2735.
APA Liu, Yunyun,As'arry, Azizan,Hassan, Mohd Khair,Hairuddin, Abdul Aziz,&Mohamad, Hesham.(2024).Review of the grey wolf optimization algorithm: variants and applications.NEURAL COMPUTING & APPLICATIONS,36(6),2713-2735.
MLA Liu, Yunyun,et al."Review of the grey wolf optimization algorithm: variants and applications".NEURAL COMPUTING & APPLICATIONS 36.6(2024):2713-2735.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Liu, Yunyun]的文章
[As'arry, Azizan]的文章
[Hassan, Mohd Khair]的文章
百度学术
百度学术中相似的文章
[Liu, Yunyun]的文章
[As'arry, Azizan]的文章
[Hassan, Mohd Khair]的文章
必应学术
必应学术中相似的文章
[Liu, Yunyun]的文章
[As'arry, Azizan]的文章
[Hassan, Mohd Khair]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。