图片搜索

   粘贴图片网址
Modeling of the Bulk Tobacco Flue-Curing Process Using a Deep Learning-Based Method
Wu, Juan1,2; Yang, Simon X.3
2021
发表期刊IEEE Access
ISSN2169-3536
EISSN2169-3536
卷号9页码:140424-140436
摘要The research of the bulk tobacco flue-curing process is helpful to model the intelligent bulk curing system, which is designed to implement the curing procedure without manual operation. An intelligent bulk curing method based on the convolutional neural network (CNN) named TobaccoNet was proposed, which could set the target dry-bulb temperature (T-D) and the target wet-bulb temperature ( T-S) of the bulk curing barn according to the tobacco leaves image. The performance of the TobaccoNet is compared with the traditional manual image feature extraction method, the stacked-sparse-autoencoder (SSAE)-based deep learning method, and the other two methods applied in related references. The test results show that TobaccoNet outperforms the comparison methods in predicting T-D and T-S. Specifically, the correlation coefficient reaches 0.9965 and 0.9683, the mean relative error is 1.62% and 1.77%, and the root mean squared error achieves 1.061 degrees C and 0.8581 degrees C respectively. The promising results demonstrate that TobaccoNet is effective and reliable for modeling the intelligent bulk tobacco flue-curing process. The influence of different CNN structures on the prediction accuracy ofT(D)and T(S)was analyzed. From the perspective of the computational complexity and the prediction performance, the proposed sequential CNN structure is more suitable for analyzing bulk tobacco curing in this study.
关键词Curing Convolutional neural networks Feature extraction Deep learning Temperature measurement Schedules Process control Convolutional neural network bulk tobacco flue-curing tobacco leaves deep learning Convolution Extraction Flues Forecasting Mean square error Neural networks Tobacco Bulk tobacco flue curing Curing process Dry bulb temperatures Features extraction Schedule Tobacco leaf
DOI10.1109/ACCESS.2021.3119544
收录类别SCIE ; EI
语种英语
WOS研究方向Computer Science ; Engineering ; Telecommunications
WOS类目Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications
WOS记录号WOS:000709060400001
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
EI入藏号20214311048050
EI分类号461.4 Ergonomics and Human Factors Engineering ; 716.1 Information Theory and Signal Processing ; 802.2 Chemical Reactions ; 802.3 Chemical Operations ; 821.4 Agricultural Products ; 922.2 Mathematical Statistics ; 944.6 Temperature Measurements
原始文献类型Article ; Journal article (JA)
出版地PISCATAWAY
引用统计
被引频次:8[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://ir.cqcet.edu.cn/handle/39TD4454/3743
专题重庆电子科技职业大学
作者单位1.Chongqing Univ, Sch Microelect & Commun Engn, Chongqing 400044, Peoples R China;
2.Chongqing Coll Elect Engn, Chongqing 401331, Peoples R China;
3.Univ Guelph, Sch Engn, Adv Robot & Intelligent Syst ARIS Lab, Guelph, ON N1G 2W1, Canada
推荐引用方式
GB/T 7714
Wu, Juan,Yang, Simon X.. Modeling of the Bulk Tobacco Flue-Curing Process Using a Deep Learning-Based Method[J]. IEEE Access,2021,9:140424-140436.
APA Wu, Juan,&Yang, Simon X..(2021).Modeling of the Bulk Tobacco Flue-Curing Process Using a Deep Learning-Based Method.IEEE Access,9,140424-140436.
MLA Wu, Juan,et al."Modeling of the Bulk Tobacco Flue-Curing Process Using a Deep Learning-Based Method".IEEE Access 9(2021):140424-140436.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Wu-2021-Modeling of (2579KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 下载
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wu, Juan]的文章
[Yang, Simon X.]的文章
百度学术
百度学术中相似的文章
[Wu, Juan]的文章
[Yang, Simon X.]的文章
必应学术
必应学术中相似的文章
[Wu, Juan]的文章
[Yang, Simon X.]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Wu-2021-Modeling of the Bulk Tobacco Flue-Curi.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。