Modeling of the Bulk Tobacco Flue-Curing Process Using a Deep Learning-Based Method | |
Wu, Juan1,2; Yang, Simon X.3 | |
2021 | |
发表期刊 | IEEE Access
![]() |
ISSN | 2169-3536 |
EISSN | 2169-3536 |
卷号 | 9页码:140424-140436 |
摘要 | The research of the bulk tobacco flue-curing process is helpful to model the intelligent bulk curing system, which is designed to implement the curing procedure without manual operation. An intelligent bulk curing method based on the convolutional neural network (CNN) named TobaccoNet was proposed, which could set the target dry-bulb temperature (T-D) and the target wet-bulb temperature ( T-S) of the bulk curing barn according to the tobacco leaves image. The performance of the TobaccoNet is compared with the traditional manual image feature extraction method, the stacked-sparse-autoencoder (SSAE)-based deep learning method, and the other two methods applied in related references. The test results show that TobaccoNet outperforms the comparison methods in predicting T-D and T-S. Specifically, the correlation coefficient reaches 0.9965 and 0.9683, the mean relative error is 1.62% and 1.77%, and the root mean squared error achieves 1.061 degrees C and 0.8581 degrees C respectively. The promising results demonstrate that TobaccoNet is effective and reliable for modeling the intelligent bulk tobacco flue-curing process. The influence of different CNN structures on the prediction accuracy ofT(D)and T(S)was analyzed. From the perspective of the computational complexity and the prediction performance, the proposed sequential CNN structure is more suitable for analyzing bulk tobacco curing in this study. |
关键词 | Curing Convolutional neural networks Feature extraction Deep learning Temperature measurement Schedules Process control Convolutional neural network bulk tobacco flue-curing tobacco leaves deep learning Convolution Extraction Flues Forecasting Mean square error Neural networks Tobacco Bulk tobacco flue curing Curing process Dry bulb temperatures Features extraction Schedule Tobacco leaf |
DOI | 10.1109/ACCESS.2021.3119544 |
收录类别 | SCIE ; EI |
语种 | 英语 |
WOS研究方向 | Computer Science ; Engineering ; Telecommunications |
WOS类目 | Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications |
WOS记录号 | WOS:000709060400001 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
EI入藏号 | 20214311048050 |
EI分类号 | 461.4 Ergonomics and Human Factors Engineering ; 716.1 Information Theory and Signal Processing ; 802.2 Chemical Reactions ; 802.3 Chemical Operations ; 821.4 Agricultural Products ; 922.2 Mathematical Statistics ; 944.6 Temperature Measurements |
原始文献类型 | Article ; Journal article (JA) |
出版地 | PISCATAWAY |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://ir.cqcet.edu.cn/handle/39TD4454/3743 |
专题 | 重庆电子科技职业大学 |
作者单位 | 1.Chongqing Univ, Sch Microelect & Commun Engn, Chongqing 400044, Peoples R China; 2.Chongqing Coll Elect Engn, Chongqing 401331, Peoples R China; 3.Univ Guelph, Sch Engn, Adv Robot & Intelligent Syst ARIS Lab, Guelph, ON N1G 2W1, Canada |
推荐引用方式 GB/T 7714 | Wu, Juan,Yang, Simon X.. Modeling of the Bulk Tobacco Flue-Curing Process Using a Deep Learning-Based Method[J]. IEEE Access,2021,9:140424-140436. |
APA | Wu, Juan,&Yang, Simon X..(2021).Modeling of the Bulk Tobacco Flue-Curing Process Using a Deep Learning-Based Method.IEEE Access,9,140424-140436. |
MLA | Wu, Juan,et al."Modeling of the Bulk Tobacco Flue-Curing Process Using a Deep Learning-Based Method".IEEE Access 9(2021):140424-140436. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Wu-2021-Modeling of (2579KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | 浏览 下载 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Wu, Juan]的文章 |
[Yang, Simon X.]的文章 |
百度学术 |
百度学术中相似的文章 |
[Wu, Juan]的文章 |
[Yang, Simon X.]的文章 |
必应学术 |
必应学术中相似的文章 |
[Wu, Juan]的文章 |
[Yang, Simon X.]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论