Person Re-Identification Based on Partition Adaptive Network Structure and Channel Partition Weight Adaptive | |
Chen, Wenjie1; Yang, Fan2 | |
2021 | |
发表期刊 | IEEE Access
![]() |
ISSN | 2169-3536 |
EISSN | 2169-3536 |
卷号 | 9页码:101402-101413 |
摘要 | This article noticed that the feature of the block in human body image is noticeable, some algorithms in pedestrian re-identification are based on partitioning the human body to calculate the similarity between pedestrians images. However, it is not easy to find a proper method to partition the pedestrian image. This article proposes a method partition adaptive network structure (PANS) to automatically determine the partition scheme. This method can save much work to find a suitable partitioning scheme, and the effect of the automatic partitioning scheme is better than that of the manual partitioning scheme. In addition, this paper proposes a pedestrian re-recognition method based on channel partition weight adaptive (CPWA). We obtained better results on three public pedestrian re-identification data sets compared with the baseline. This method, combined with the automatic partitioning scheme proposed in this article, can improve results. We have done experiments on the three public data sets of market-1501, DukeMTMC-Reid, and CUHK03, proving the superiority of the two methods proposed in this article. |
关键词 | Feature extraction Adaptive systems Partitioning algorithms Manuals Deep learning Adaptation models Training Channel-partition-weight-adaptive deep learning partition-adaptive-network-structure person re-identification Adaptive networks Automatic partitioning Human bodies Partition schemes Pedestrian re identification Person re identifications Public pedestrian Recognition methods |
DOI | 10.1109/ACCESS.2021.3097632 |
收录类别 | SCIE ; EI |
语种 | 英语 |
WOS研究方向 | Computer Science ; Engineering ; Telecommunications |
WOS类目 | Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications |
WOS记录号 | WOS:000678304900001 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
EI入藏号 | 20213010675455 |
原始文献类型 | Article ; Journal article (JA) |
出版地 | PISCATAWAY |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://ir.cqcet.edu.cn/handle/39TD4454/3505 |
专题 | 重庆电子科技职业大学 |
作者单位 | 1.Chongqing Coll Elect Engn, Chongqing 401331, Peoples R China; 2.ZTE Corp Nanjing Res & Dev Ctr, Nanjing 210012, Peoples R China |
推荐引用方式 GB/T 7714 | Chen, Wenjie,Yang, Fan. Person Re-Identification Based on Partition Adaptive Network Structure and Channel Partition Weight Adaptive[J]. IEEE Access,2021,9:101402-101413. |
APA | Chen, Wenjie,&Yang, Fan.(2021).Person Re-Identification Based on Partition Adaptive Network Structure and Channel Partition Weight Adaptive.IEEE Access,9,101402-101413. |
MLA | Chen, Wenjie,et al."Person Re-Identification Based on Partition Adaptive Network Structure and Channel Partition Weight Adaptive".IEEE Access 9(2021):101402-101413. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Chen-2021-Person Re-(1420KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | 浏览 下载 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Chen, Wenjie]的文章 |
[Yang, Fan]的文章 |
百度学术 |
百度学术中相似的文章 |
[Chen, Wenjie]的文章 |
[Yang, Fan]的文章 |
必应学术 |
必应学术中相似的文章 |
[Chen, Wenjie]的文章 |
[Yang, Fan]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论