SAR image denoising algorithm based on Bayes wavelet shrinkage and fast guided filter | |
Yang, Xiu Jie1; Chen, Ping2 | |
2019 | |
发表期刊 | Journal of Advanced Computational Intelligence and Intelligent Informatics
![]() |
ISSN | 1343-0130 |
EISSN | 1883-8014 |
卷号 | 23期号:1页码:107-113 |
摘要 | To remove the speckle noise of synthetic aperture radar (SAR) images, a novel denoising algorithm based on Bayes wavelet shrinkage and a fast guided filter is proposed. According to the statistical properties of SAR images, the noise-free signal and speckle noise in the wavelet domain are modeled as Laplace and Fisher-Tippett distributions respectively. Then a new wavelet shrinkage algorithm is obtained by adopting the Bayes maximum a posteriori estimation. Speckle noise in the high-frequency domain of SAR images is shrunk by this new wavelet shrinkage algorithm. As the wavelet coefficients of the low-frequency domain also contain some speckle noise, speckle noise in the low-frequency domain can be further filtered by the fast guided filter. The result of the denoising experiments of simulated SAR images and real SAR images demonstrate that the proposed algorithm has the ability to better denoise and preserve edge information. © 2019 Fuji Technology Press. All Rights Reserved. |
关键词 | Edge detection Frequency domain analysis Image denoising Shrinkage Speckle Synthetic aperture radar Wavelet analysis Guided filters High frequency domain Maximum a posteriori estimation SAR Images Statistical properties Synthetic aperture radar (SAR) images Wavelet Wavelet shrinkage algorithm |
DOI | 10.20965/jaciii.2019.p0107 |
收录类别 | EI ; ESCI |
语种 | 英语 |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Artificial Intelligence |
WOS记录号 | WOS:000456264200015 |
出版者 | Fuji Technology Press |
EI入藏号 | 20190606465756 |
EI分类号 | 716.1 Information Theory and Signal Processing ; 716.2 Radar Systems and Equipment ; 741.1 Light/Optics ; 921 Mathematics ; 921.3 Mathematical Transformations ; 951 Materials Science |
原始文献类型 | Journal article (JA) |
出版地 | TOKYO |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://ir.cqcet.edu.cn/handle/39TD4454/3214 |
专题 | 重庆电子科技职业大学 |
作者单位 | 1.Computer College, Chongqing College of Electronic Engineering, No.48 Middle Road, University Town, Shapingba District, Chongqing; 401331, China; 2.Training and Continuing Education College, Chongqing College of Electronic Engineering, No.48 Middle Road, University Town, Shapingba District, Chongqing; 401331, China |
第一作者单位 | 重庆电子科技职业大学 |
推荐引用方式 GB/T 7714 | Yang, Xiu Jie,Chen, Ping. SAR image denoising algorithm based on Bayes wavelet shrinkage and fast guided filter[J]. Journal of Advanced Computational Intelligence and Intelligent Informatics,2019,23(1):107-113. |
APA | Yang, Xiu Jie,&Chen, Ping.(2019).SAR image denoising algorithm based on Bayes wavelet shrinkage and fast guided filter.Journal of Advanced Computational Intelligence and Intelligent Informatics,23(1),107-113. |
MLA | Yang, Xiu Jie,et al."SAR image denoising algorithm based on Bayes wavelet shrinkage and fast guided filter".Journal of Advanced Computational Intelligence and Intelligent Informatics 23.1(2019):107-113. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Yang, Xiu Jie]的文章 |
[Chen, Ping]的文章 |
百度学术 |
百度学术中相似的文章 |
[Yang, Xiu Jie]的文章 |
[Chen, Ping]的文章 |
必应学术 |
必应学术中相似的文章 |
[Yang, Xiu Jie]的文章 |
[Chen, Ping]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论