图片搜索

   粘贴图片网址
The Short Video Popularity Prediction Using Internet of Things and Deep Learning
He, Zichen1; Li, Danian2
2024
发表期刊IEEE ACCESS
ISSN2169-3536
EISSN2169-3536
卷号12页码:47508-47517
摘要In order to furnish valuable insights and solutions applicable to content creators, social media platforms, academic research, and general users, this investigation integrates the Internet of Things (IoT) with deep learning regression models to examine methodologies for predicting the popularity of short videos. Within the context of cross-cultural communication, a proposed Content Popularity Rank Prediction based on the Convolutional Neural Network (CPRP-CNN) model relies exclusively on the personal attributes of the publisher and the textual characteristics of short videos to anticipate the viewership levels of short videos promptly following their release. Through simulated experiments, the model's performance is assessed, revealing that the utilization of the Rectified Linear Unit (Relu) activation function in the CPRP-CNN model enhances accuracy by 42.2% when contrasted with the use of the sigmoid function. This enhancement is coupled with a 37.8% reduction in cross-entropy loss. Furthermore, the proposed CPRP-CNN model attains a cross-entropy of 0.692 and an accuracy of 74.7%, exhibiting superior Mean Squared Error (MSE) and Mean Absolute Error (MAE) values of 2.728 and 1.751, respectively, when compared to alternative prediction models. These outcomes signify that the amalgamation of deep learning models with fused features within the IoT context significantly ameliorates the predictive efficacy of short video popularity. The research findings contribute to the enhancement of personalized and precise short video content recommendations.
关键词Cross-cultural communication deep learning regression model short video popularity prediction Internet of Things
DOI10.1109/ACCESS.2024.3383060
收录类别SCIE ; EI
语种英语
WOS研究方向Computer Science ; Engineering ; Telecommunications
WOS类目Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications
WOS记录号WOS:001197741500001
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
EI入藏号20241415844669
原始文献类型Article
引用统计
被引频次[WOS]:0   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://ir.cqcet.edu.cn/handle/39TD4454/18360
专题重庆电子科技职业大学
作者单位1.Chongqing Normal Univ, Sch Journalism & Commun, Chongqing 401331, Peoples R China;
2.Chongqing Coll Elect Engn, Sch Elect & Internet Things, Chongqing 401331, Peoples R China
推荐引用方式
GB/T 7714
He, Zichen,Li, Danian. The Short Video Popularity Prediction Using Internet of Things and Deep Learning[J]. IEEE ACCESS,2024,12:47508-47517.
APA He, Zichen,&Li, Danian.(2024).The Short Video Popularity Prediction Using Internet of Things and Deep Learning.IEEE ACCESS,12,47508-47517.
MLA He, Zichen,et al."The Short Video Popularity Prediction Using Internet of Things and Deep Learning".IEEE ACCESS 12(2024):47508-47517.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[He, Zichen]的文章
[Li, Danian]的文章
百度学术
百度学术中相似的文章
[He, Zichen]的文章
[Li, Danian]的文章
必应学术
必应学术中相似的文章
[He, Zichen]的文章
[Li, Danian]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。