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Abstract—With the development of informatization, network
businesses are expanding and business functions are becoming
more powerful; thus, network infrastructure has begun to face
new challenges in serving businesses. Research regarding the
dynamic deployment of network slices according to business
requirements is urgently needed. To develop a realistic and
complete view of service providers’ decision-making process,
adaptation costs must be considered. Function orchestration of
virtualized radio access networks is a critical way for network
slices to offer web apps customized service. In this paper,
we develop a mathematically optimized model for function
orchestration and propose an orchestration strategy using a
form of particle swarm optimization (VNFPSO), in virtualized
radio access network. Bearing in mind the openness of radio
access network frameworks, discreteness of network functions,
and proliferation of network traffic, we have enhanced the state-
of-the-art PSO algorithm in terms of inertia weight, particle
mutation, and factor learning to improve the speed of obtaining
a global approximate optimal solution. Simulated experimental
results show that this strategy could decrease rejection rates
in virtualized radio access networks and improve the utility of
network system resources.

Index Terms—Virtualization; Network functions orchestration;
PSO.

I. INTRODUCTION

With the development of network function virtualization
(NFV) and software-defined networks (SDNs), NFV orches-
tration (NFVO) has come to be regarded as the core of future
networks; this task is crucial to helping operators flexibly
manage network systems and maximize the advantages of new
technologies[1]. NFVO can standardize virtual networking
functions to increase the interoperability of SDN elements.
NFVO can also orchestrate resources, network services, and
other functions, rendering it a central component of an NFV-
based solution. NFVO binds different functions to create an
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end-to-end, resource-coordinated service in an otherwise dis-
persed NFV environment (i.e., virtual service) [1]. It is there-
fore important to ensure that adequate computer, storage, and
network resources are available to provide network services.
NFVO can coordinate, authorize, release, and engage resources
independent of a specific virtual infrastructure manager. It
also provides governance around NFV instances of resource
sharing in the NFV infrastructure. The Management and Orga-
nization Working Group of the European Telecommunications
Standards Institute (ETSI) has defined the NFV orchestrator
[2].

Current NFVO methods (i.e., orchestrating node functions
along with the SFC) mainly orchestrate the corresponding in-
frastructure for specific web apps at specific times to maximize
the global value of infrastructure [3]. NFVO is an emerging
paradigm in which loosely coupled VNFs are orchestrated,
located, and invoked on virtualized services as base stations in
radio access networks. We have proposed a two-stage mapping
framework for virtualized networks [4]. This framework first
applies logical mapping to web apps and virtualized functions
that are customized for web apps [5]; then, it applies physical
mapping to the virtualized function set and infrastructure to
maximize infrastructure use [6-9]. In [5], matching virtualized
services for web apps are presumably designed by network
management experts. In management platforms for virtualized
radio access, virtualized network functions should be orches-
trated automatically.

In recent years, telecommunication service providers have
experienced a consistent decline in revenue [10-11]. NFV
promises to decrease the costs of deploying and operating
large networks by migrating network functions from dedicated
hardware appliances to software instances running on general-
purpose virtualized networking and computing infrastructures.
It is generally believed that NFVO could lower equipment
purchases and maintenance expenses without compromising
flexibility and openness [12]. Therefore, in this paper, we
prioritize economic benefits (without considering the sequence
of virtualized network functions) when researching virtualized
network resource orchestration. In actual network mainte-
nance, the topologies of network change and resources for
network adjustment require results from the business layers.
Furthermore, business control and analysis cannot be accom-
plished without a thorough understanding of the resource
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layer and relevant complexities. Two aims should thus be
achieved to realize virtualized network function orchestration:
customized functions of web apps and optimal economic ben-
efits for infrastructure. Specific conditions should be satisfied
to orchestrate virtualized network functions. The infrastructure
will be managed and controlled by the virtualization layer,
which can abstract the infrastructure into virtualized network
functions without platform restrictions while representing the
running states of physical resources. Based on the above
analysis, we have conducted research to orchestrate the most
economical virtualized service to be matched with web apps.
Our main contributions are as follows:

• A mathematical model is proposed for virtualized net-
works to centrally choose relevant network components to
orchestrate a highly economical new virtualized service.

• A novel modified particle swarm optimization algorithm
(VNFPSO) is presented to solve our proposed model with
a resource allocation problem.

• A simulated experiment is designed, through which the
qualities of the VNFPSO algorithm in virtualized function
orchestration are validated.

The remainder of this paper is organized as follows. In
Section 2, we describe the system model and formulate the
mathematical model. In Section 3, we describe our scheduling
algorithms. The results of our experiment are presented in
Section 4. Section 5 concludes our work.

II. SYSTEM MODEL AND MODEL FORMALIZATION

A. System model

Our cloud scenario is similar to the PaaS model, in which
users can submit complex requests consisting of off-the-shelf
services [13]. Off-the-shelf services have a highly convenient
interface (e.g., API) to be called. Each service is associated
with a price, which is assigned by its creator. When a user
submits a compute request (or task) that calls other services,
he/she must pay for usage of these services; the payment
is determined by how many resources will be consumed. A
specific virtualized service is orchestrated for every type of re-
quest. Moreover, every virtualized service shares infrastructure
resources through time slots, as illustrated in Fig 1. We mainly
focus on orchestration from requests to virtualized services;
mapping research from virtualized services to infrastructure is
described in [11-14].

We considered the environment for the edge cloud scenario.
The whole system is divided into RF and signal processing
parts. RF only retains part of power domain and frequency do-
main, and is virtualized and dynamically controlled. The signal
processing part is transferred to the server and controlled by
the virtual machine.The network functions of each virtual
service are composed of power domain, frequency domain
and server resources. The resources required for each virtual
service can be supplied by either one physical node or multiple
physical nodes.Each physical node can provide resources to
either one virtual service or multiple virtual services.

Fig. 1. Virtualized service principles

B. Model Formulations

1) Efficiency formulation of virtualized requests: We define
the virtualized request of web app i as

Ri = (Fi, QoSi) (1)

, where Fi is a virtualized function set requested by web app
i, expressed as follows:

Fi = (f1, fj , fn)

where fj = {id, name, description, note}
(2)

. QoSi is a corresponding feature of virtualized function fj
requested by web app i, expressed as

QoSi = (a1, ak, am)

where ak =
{
itk, bk, pk

} (3)

. fj refers to the jth network function. ak denotes the features
elicited by virtual function fj . it represents server resources
of information technology, b represents bandwidth resources,
and p represents power transceiver resources. n denotes the
number of functions in the resource pool, and m denotes the
number of features in the resource pool.

2) Physical network benefits: We can determine the cost
of a unit spectrum to be cs. The number ni,j,ks of bandwidth
resources on feature ak of virtualized function fj of web app
i can be written as

ni,j,ks =

⌈
bk

B

⌉
(4)

, where B is the size of the unit bit-rate. The cost of spectrum
utilization on radio access link ηs is

ηs = ni,j,ks × exp

[
B

log2(1 + γi)

]
× cs (5)

, where γi denotes the signal-to-noise ratio. We determine the
cost of a unit power transceiver to be cp. The cost of power
transceiver utilization on radio access link ηp is

ηp = pk × cp (6)



, We determine the cost of a unit resource of server it as cit.
The cost of server resource it consumption ηit is

ηit = itk × cit (7)

, The deployment benefits of VNF comprise the joint util-
ity function of spectrum utilization together with the power
transceiver and server resources. The total cost of VNF de-
ployment ηd is

ηd = σb × ηs + σp × ηp + σit × ηit (8)

, where σb, σp, and σit are the respective weighting factors,
which satisfy 0 ≤ σb, σp, σit ≤ 1 and σb + σp + σit = 1.

C. Establishment of mathematical models

The optimization objective is to minimize the SP’s overall
orchestration cost. The optimized model can be written as
follows:

obj min
n∑
j=1

m∑
k=1

µj,k

s.t.

Ri,j,k.it ≤ N × xj′,k′ .it
Ri,j,k.p ≤ N × xj′,k′ .p
Ri,j,k.b ≤ N × xj′,k′ .b
∀xi,j = 1,∃xi+y,j = 1, if fi → fi+y

∀xi,j = 1,∃xi+y,j = 0, if fi 9 fi+y

dj = δs × ηs + δp × ηp + δit × ηit + ηd

µj,k =


dj N = 1

N × dj + costj,k N > 1

N × dj 0 < N < 1

0 other

(9)

, where µj,k is a value function, specifically the cost that
virtual functional module fj with feature ak should pay. xj′,k′
is the selected functional module. Ri,j,k.it ≤ N × xj′,k′ .it,
Ri,j,k.p ≤ N×xj′,k′ .p, Ri,j,k.b ≤ N×xj′,k′ .b indicating that
N virtual functional modules fj with feature ak are chosen.
Their server resources, spectrum resources, and sending and
receiving power are equal to or greater than the resources
requested by web app i. fi → fi+y indicates that virtual
functional module fj and virtual functional module fi+y are
mutually dependent; if fj exists, then there must also be fi+y.
fi 9 fi+y indicates that virtual functional module fj and
virtual functional module fi+y are mutually exclusive; if fj
exists, then there must be no fi+y . costj,k represents the
required expenses when N virtual functional modules fj with
feature aj are being used in parallel. Mcostj,k represents the
required expenses whenN virtual functional modules fj with
feature aj are sharing a resource. δs, δp, and δit are combined
as the coefficient of functional module xj′,k′ .

III. PROBLEM SOLVING

The orchestration problem of the most economical service
is an issue of combination optimization and classified as a
maximum clique problem (MCP), which is NP hard. Two

types of algorithms are available to solve MCP: certain algo-
rithms and heuristic algorithms. Certain algorithms include the
backtracking algorithm and ‘red and black’. Certain algorithms
can search any or all solutions to a problem systematically
while remaining both systematic and skipping. However, the
orchestration problem of virtual service is an NP complete
problem, wherein certain algorithms are inherently time-
consuming. Heuristic algorithms can obtain the approximate
optimal solution more quickly. PSO is comparatively simple
with a high convergence speed and offers an efficient method
for solving MCP; however, the PSO algorithm suffers from
pitfalls such as premature convergence, dimension problems,
and local extreme values. Virtualization radio access networks
are characterized by openness of the radio access network
framework, discrete network functions, and exponential net-
work traffic. In this paper, we strive to enhance the state-of-
the-art PSO algorithm and propose the VNFPSO algorithm to
solve the orchestration problem to provide the most econom-
ical service.

Assume that in the total dimension number D = m × n
of orchestration problem, select any L particles to form a
group in which ith (i < L) particle in k generation can
be described by two indexes; The value of virtual functional
feature can be regarded as PSO location, represented as the
D dimensional vector of Zki =

(
zki,1, z

k
i,2, · · · , zki,D

)
; the

change speed of virtualized function values can be seen as
flying speed of PSO, repented as the D dimensional vector
of V ki =

(
vki,1, v

k
i,2, · · · , vki,D

)
. The best location in individual

history is Pski =
(
pski,1, ps

k
i,2, · · · , pski,D

)
when ith particle

is searched to k generation. The historical optimal location of
the whole particle group is Pskg =

(
pskg,1, ps

k
g,2, · · · , pskg,D

)
when is searched to k generation. Thus the iteration formula
of speed and location for ith particle at jth dimension is as
follows:v

k+1
i,j =

ω × vki,j + c1 × r1 ×
(
pski,j − zki,j

)
+ c2 × r2 ×

(
pskg,j − zki,j

)
zk+1
i,j = zki,j + vk+1

i,j

(10)

, where ω is the inertia weight, representing the influence of
prior speed on subsequent movement. c1 and c2 are learning
factors; r1 and r2 are random numbers within [0,1].

A. Inertia weight design in various steps
As an important parameter in the PSO algorithm, inertia

weight ω plays a major role in balancing the convergence
speed and search ability of optimal solutions. A larger ω was
deemed favorable for convergence speed but could miss the
optimal solution; this pattern suggests that a smaller ω may
improve the local mining capacity of the algorithm but prolong
convergence time. In accordance with this process, we can
dynamically adjust inertia weight ω of the traditional PSO
algorithm. When a particle location approaches the historical
optimal location of individuals or the whole particle group, the
convergence speed and flying speed should be enhanced. To
guarantee a favorable local search capacity and convergence
speed, the formula for inertia weight ω is



ωk+1 =



ωk ×

1 +
1√∑2

m=1

∑k
i=0(cm,i)2+

∑k
i=0(rm,i)2

k2

 ,

|pski,j − zki,j | > tv1 or |pskg,j − zkg,j | > tv2

ωk ×

1− 1√∑2
m=1

∑k
i=0(cm,i)2+

∑k
i=0(rm,i)2

k2

 ,

|pski,j − zki,j | ≤ tv1 or |pskg,j − zkg,j | ≤ tv2
(11)

where tv1 and tv2 are threshold values, c1,i and c2,i are
the ith learning factors, and r1,i and r2,i are the ith random
functions.

B. Mutation particle design

During the optimization process of the PSO algorithm, con-
tradictions emerge between population diversity and algorithm
convergence speed. The traditional PSO algorithm can be
improved to enhance the local search capacity while main-
taining population diversity to prevent premature convergence
at higher speeds. The actual improved strategies are as follows:

Step 1: Select mutation particles If pskg − pski ≥ tp , then
psi is a mutation particle and tp is the threshold value.

Step 2: Smooth the moving distance of mutation particles
Bd(1) =

∑L
i=0 |ps1i − ps1g|

L
k = 1

Bd(k) =
2×

∑L
i=0 |ps

k
i−ps

k
g |

L + (k − 1)×Bd(k − 1)

k + 1
k ≥ 2

(12)
. Here, Bd(k) is the smooth-move distance of kth generation
mutation particles.

Step 3: Particle mutation formula

pski = pski +Bd(k) (13)

C. Non-linear dynamic learning factor design

The formula to update the speed of the PSO algorithm
consists of two parts. Under the influence of new speed vi,
a particle will gradually fly to a random weighted location
between optimal global location Psg and optimal partial
location psi. The learning factors respectively represent the
degree to which the partial location relies on its experience
and the population’s experience. The standard PSO algorithm
generally sets the value of these two learning factors as a
constant and considers the degree to be the same; however,
every particle plays a different role at different stages. If we
could guarantee that each particle could obtain a high degree of
confidence initially with strong spatial development abilities,
then revolutionized particles would have greater confidence in
population decisions to aid in the particle population’s conver-
gence into either a global optimal or second optimal solution.
This paper adopts non-linear dynamic learning factors based
on triangle functions to manage the local development and

global convergence abilities of particles. The value modifica-
tions of c1 and c2 are as follows:

ck+1
1 = ck1 + cos2(ck1 ×

k

T
) + β × α

ϑ
(14)

,

ck+1
2 = ck2 + sin2(ck2 ×

k

T
) + β × α

ϑ
(15)

, where T is the total revolutionized algebra, and α is the
evenly distributed random number within (0, 1). ϑ ∈ [2, 10]
is used to control the extent of shaking in random number α.
β is either 0 or 1 and decides whether a random disturbance
quantity α is added to c1 or c2 during the dynamic change
process. r1 = r2 = α

ϑ . On the condition that c1 + c2 is
essentially stable, learning factor c1 declines dynamically and
c2 increases dynamically.

D. Experiment environment

During the entire simulation, we mainly focus on orches-
trating nine virtualized network functions, each of which has
four features that consume certain amounts of three resources:
server resources, frequency resources, and power resources.
Assuming that the minimum consumed resources for each
feature are fixed (i.e., initially generated at random from 0 to
15), the total amount of server resources, frequency resources,
and power resources is also fixed at 5000 each. The virtualized
network function type and the features of function types differ;
one or more features are chosen at random from each function,
and the number is set at random as well. The aim is to
determine the lowest-cost strategy to identify the number of
features per function.
• Rejection rate of virtualized requests
The rejection rate of virtualized requests is represented

by the ratio of rejected requests to requests. A request can
be rejected in two scenarios: when the number of requested
resources exceeds that in the service pool; or when the number
of certain requested sources for a certain function exceeds the
amount of resources available. Without considering business
access and output, an experimental simulation was designed
under the following conditions: low probability of web apps in
total virtualized requests, 50% for web apps in total virtualized
requests, and random web app generation; results appear in Fig
2.

“Traditional” refers to the traditional solution wherein the
resources required for each function are fixed. When the
resource number of virtualized requests required for each func-
tion is lower than the number of resources in the traditional
solution, the service will be offered. “No pricing VNFPSO”
involves VNFPSO, but the price for each resource is fixed.
“Pricing VNFPSO” adopts VNFPSO, but the price of each
resource is related to supply and demand for resources, as
shown in Formulas (10) to (12). As shown in Fig 2, when the
emergence rate of new apps was 50%, the fluctuation rate for
the 0 to 20th web app was large in the traditional algorithm;
the rejection rate was 0 for the ‘no pricing VNFPSO’ and
‘pricing VNFPSO’ algorithms. Beginning with the 21st web
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app, the rejection rate of these three algorithms was nearly the
same.

• Resource number of virtualized requests

In Fig 3, “Request” denotes the total number of resources re-
quested by each virtualized request; “Allocated by traditional”
represents the actual allocation scenario of every virtualized
overall resource in the traditional algorithm; and “Allocated by
no pricing VNFPSO” is the actual allocation circumstance of
every virtualized overall resource in ‘pricing VNFPSO’. The
traditional algorithm offered only one service for the first 30
requests, and the actual allocated resource amount exceeded
the virtualized request resources. ‘Pricing VNFPSO’ offered
23 services at most for the first 30 virtualized requests, and the
actual allocated resource amount was close to the virtualized
request resources. ‘No pricing VNFPSO’ was not as effective
as ‘pricing VNFPSO’.

IV. CONCLUSION

Network slicing is the basis of solving the problem of
diversified demands in future networks. VNFO is a core tech-
nology in network slicing. We have studied virtualized radio
access resource orchestration. We established a mathematical
orchestration model for virtualized network functions based on
economic benefits. This work solves the orchestration problem
of inner resources for each virtualized network. Subsequent
research will involve automatic orchestration of virtualized
services, namely by selecting a virtualized network function
set, ordering and processing each virtualized network function,
and examining connection problems between each function.
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