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For the identification problem of closed-loop subspace model, we propose a zero space projection method based on the estimation
of correlation function to fill the block Hankel matrix of identification model by combining the linear algebra with geometry. By
using the same projection of related data in time offset set and LQ decomposition, the multiplication operation of projection is
achieved and dynamics estimation of the unknown equipment system model is obtained. Consequently, we have solved the
problem of biased estimation caused when the open-loop subspace identification algorithm is applied to the closed-loop
identification. A simulation example is given to show the effectiveness of the proposed approach. In final, the practicability of
the identification algorithm is verified by hardware test of UAV servo system in real environment.

1. Introduction

In the past twenty years, the subspace model identification
(SMI) has received great attention, not only because of its
excellent convergence and simple numerical calculation,
but also the suitability for the application in the estimation,
prediction, and control algorithm. In the early references,
most subspace identification methods have open-loop recog-
nition characteristics. Considering stability, safety, and
control-oriented identification problems, researchers have
been trying to apply these subspace methods to closed-loop
identification [1–4].

The main difficulty in closed-loop system identification is
that the correlation between device input and interference
leads to a bias in the parameter estimation of the system
model [5]. So far, it has developed many subspace identifica-
tion methods, such as the literature [6–11], which can obtain
consistent estimates and closed-loop data. It is noticed that
most subspace system identification methods are based on
the input and output data in time domain, and the frequency
response methods of some linear time invariant systems are
often based on the signal correlation function [12, 13].

Subspace method is extended to frequency response
function estimation, and continuous and discrete time
models are determined by auxiliary variables [14]. Two fre-
quency statistical properties and subspace convergence anal-
ysis methods are proposed in the literature [15]. For a linear
closed-loop system, where the external input is independent
of the observed noise, the cross correlation function of the
output and the external input signals is equal to the cross
correlation function of the input and external signals of
the dynamic system [16]. By using correlation function
sequence as the interface function, the important informa-
tion has been carried by the correlation function in data
compression which has been hidden in the sequence, and
by extracting the parameter information of interface func-
tion, it provides the basis for parameter identification [17].

The above algorithms can solve the problem of correla-
tion between input and interference of the equipment to
some extent. The unbiased parameter estimation can be
obtained under arbitrary noise characteristics [18]. But the
subspace identification algorithm can solve the relationship
between the input and interference at the same time, because
the relation between the two related function sequences
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cannot be completely determined, which leads to the higher
dimension of the input matrix of the subspace computation
matrix [19].

In order to simplify the calculation and improve the cal-
culation accuracy, we design the input deletion strategy based
on the zero space projection on the basis of block Hankel
matrix and related data estimation separately [20]. This
paper also uses LQ framework to solve the identification pro-
cess and simplifies the calculation of the algorithm [21]. In
this paper, a new subspace identification algorithm based
on the estimation of correlation function is proposed, and
the unbiased parameter estimation of closed-loop dynamics
under linear closed-loop conditions is obtained.

For the EIV (errors-in-variables) model structure,
namely, the input and output, both are affected by noise
pollution. Chou and Verhaegen put forward a new method
of subspace identification [12]. The method eliminates noise
effects by regarding the past input/output data as auxiliary
variables. Gustafsson [22] changed the steps of the traditional
subspace identification method and proposed a new sub-
space auxiliary variable method (subspace-based identifica-
tion using instrumental variables (SIVs)). The algorithm
presented in the literature [12] was included, and the identi-
fication precision was improved after the algorithm was
modified. In terms of the algorithm itself, the input being
independent of noise assumption is not involved in the two
methods; thus, it seems that they can be applied for identifi-
cation in a closed-loop system. However, this is not the case
based on simulation examples; these two types of algorithms
used in closed-loop identification do not obtain consensus
estimates in some cases.

On the other hand, for closed-loop systems subject to the
input and output measurement noises, [23] developed a new
closed-loop subspace identification algorithm (SOPIM) by
adopting the EIV model structure of SIMPCA and proposed
an orthogonal projection approach to avoid identifying the
parity space of the feedback controller. In the literature
[24], it proposed the use of parity space and principal compo-
nent analysis (SIMPCA) for EIV identification with colored
input excitation can also be applied to closed-loop identifica-
tion. Instead of preestimating the Markov parameters or
eliminating them via noncausal projections, SIMPCA refor-
mulates the SIM problem in parity space. In the process of
algorithm implementation, SVD should be applied twice to
solve the orthogonal complement space in the two
methods. It is difficult to determine the dimensions of the
orthogonal complement space when the system order is
unknown. The contribution of this paper is to use a zero
space projection method based on the estimation of correla-
tion function to fill the block Hankel matrix of identification
model by combining the linear algebra with geometry. By
using the same projection of related data in time offset set
and LQ decomposition, the multiplication operation of
projection is achieved and dynamics estimation of the
unknown equipment system model is obtained. Simulation
shows that this algorithm has higher accuracy, which is
another contribution of this paper.

The outline of this paper is as follows: we start in Section
2 with the statement of the problem and notation, and then a

state space model based on estimation of correlation function
is obtained. In Section 3, we present a block Hankel matrix,
related data estimation equations, and deletion of input items
based on null space projection for subspace model identifica-
tion process. In Section 4, both a simulation example and a
real hardware verification experiment are presented. We
end this paper with our conclusions in Section 5.

2. Closed-Loop Subspace Identification

2.1. Statement of the Problem and Notation. In the UAV
servo closed-loop control system, there is an unknown
device, as shown in Figure 1. The device model contains
deterministic part P, and random parts are obtained by filter-
ing white noise sequence ηy with the noise filter Hp. There-
fore, the device model can be represented as

y k = P z u k +Hp z ηy k 1

In the formula, u ∈ℛnu and y ∈ℛny are input and output
vectors, respectively, ηy ∈ℛny is the zero mean and covari-
ance matrix, and Δηy

> 0 is the white noise.
The system operates under the controller C and shows

closed-loop characteristics, so that the closed-loop system
can be stably controlled in the whole control trajectory. The
resulting control output signals are as follows:

u t − r2 t = C z r1 t − y t +Hc z ηu t 2

In the formula, the variance matrix is the zero mean of
Δηu > 0. The white noise sequence ηu ∈ℛ

nu is filtered by
Hc. Exogenous inputs of r1 ∈ℛ

ny and r2 ∈ℛnu meet persis-
tent excitation conditions and are independent of white noise
ηu and ηy. The internal signals ω and v can be represented by
ηu and ηy, which are statistically independent quantities of
arbitrary colors and known external sequences r1 and r2. In
Figure 1, the system scheme based on the following loop
states recognition problem of this study: given the exogenous
input of r1 k and r2 k , and the input and output sequences
of u k and y k , the goal is to determine the unknown
devices in the closed-loop system without the state space
model of partial parameter description, as shown in Figure 1.

The signal s t ∈ℛns and t ∈Z are quasi steady processes
satisfying the following two conditions:

E s t =ms t ,  ms t 2 ≤ C, ∀t ∈Z ,

Rss τ = lim
N→∞

1
N

〠
N−τ−1

t=0
E s t + τ s t T

3

In the formula, Rss τ 2 ≤ C, ∀τ ∈Z . E indicates
expected operation. The function Rss τ : Z →ℛns×ns is
called the autocorrelation function of s t . Similarly, if
ω t ∈ℛnω is a quasi stationary signal, then the cross-
correlation function Rsw τ : Z →ℛns×nw of s t and ω t is
computed as

Rsw τ = lim
N→∞

1
N

〠
N−τ−1

t=0
E s t + τ ω t T 4
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If only N data is available, the estimates of the auto-
correlation function and cross-correlation function can be
calculated as

R̂ss τ = 1
N

〠
N−τ−1

t=0
s t + τ s t T ,

R̂sw τ = 1
N

〠
N−τ−1

t=0
s t + τ ω t T

5

At the same time, it is assumed that in N →∞ case,
Rss τ and Rsw τ are convergents, respectively.

2.2. State Space Model Based on Estimation of Correlation
Function. The subspace identification process adopts the
method of calculating the state space matrix to identify the
system parameters. Therefore, the first step of the algorithm
is to represent the system model into the state space model.
Here, the unknown device model P shown in Figure 1 is
rewritten as the following state space model form:

xp k + 1 =Apxp k + Bpu k ,
y k =Cpxp k +Dpu k + v k

6

In the formula, xp ∈ℛnp is the state vector of the device,
and the system matrices are Ap ∈ℛ

np×np , Bp ∈ℛ
np×nu , Cp ∈

ℛny×np , and Dp ∈ℛ
ny×nu . If the exogenous signal r = r1 or

r = r2 is related to the input u, the output y, and the noise
v, the cross-correlation functions Ryr τ ∈ℛny×ny , Rur τ ∈
ℛnu×ny , and Rvr τ ∈ℛny×ny exist. The covariance Rxpr

τ ∈
ℛnp×ny of the states xp and r t is defined, and then the cor-
relation function of the device can be represented as in the
state space matrix.

Rxpr
τ + 1 = ApRxpr

τ + BpRur τ ,

Ryr τ = CpRxpr
τ +DpRur τ + Rvr τ

7

It is assumed that the correlation functions Ryr τ and
Rur τ are known within a certain interval τ ∈ τ0, τ1 , so that
R̂yr τ is the estimate of the correlation function Ryr τ , and

the definitions of R̂ur τ and R̂vr τ are similar. Then, the
correlation function shown in (7) can be rewritten as

Rxpr
τ + 1 = ApRxpr

τ + BpR̂ur τ ,

R̂yr τ = CpRxpr
τ +DpR̂ur τ + R̂vr τ

8

Since the external input instrument signals r are uncorre-
lated with noise of ηy and v, all elements of R̂vr τ along with
N →∞ will gradually tend to 0. Then, the correlation func-
tion (8) will converge to

Rxpr
τ + 1 = ApRxpr

τ + BpR̂ur τ ,

R̂yr τ = CpRxpr
τ +DpR̂ur τ

9

Based on the consistency of correlation function estima-
tion, the direct method of correlation function estimation
can be obtained, instead of the original input and output data
consistent with the system estimate.

3. The Correlation Function Recognition Based
on Subspace Estimation

Through the correlation function estimation and zero space
followed by projection, block Hankel matrix of identification
framework for filling, we can obtain the scope of the extended
observability matrix, which is the basic step of subspace iden-
tification methods. Then, an estimate of the dynamics of an
unknown device system model can be obtained based on
the same projection on the time offset set of the correlation
data. Finally, the operation of projection multiplication can
be realized by numerical calculation of LQ decomposition.

3.1. Block Hankel Matrix and Related Data Estimation
Equations. Construct the correlation function to estimate
the partitioned Hankel matrices of R̂yr

τ0∣τi−1
and R̂ur

τ0∣τi−1
, includ-

ing i rows and j columns, as defined below:

R̂yr
τ0 τi−1

=

R̂yr τ0 R̂yr τ1 ⋯ R̂yr τj−1

R̂yr τ1 R̂yr τ2 ⋯ R̂yr τj

⋮ ⋮ ⋱ ⋮

R̂yr τi−1 R̂yr τi ⋯ R̂yr τj+i−2

,

R̂ur
τ0 τi−1

=

R̂ur τ0 R̂ur τ1 ⋯ R̂ur τj−1

R̂ur τ1 R̂ur τ2 ⋯ R̂ur τj

⋮ ⋮ ⋱ ⋮

R̂ur τi−1 R̂ur τi ⋯ R̂ur τj+i−2

10

In the formula, R̂yr
τ0∣τi−1

∈ℛnyi×nr j, R̂ur
τ0∣τi−1

∈ℛnui×nr j, each

element of R̂yr
τ0∣τi−1

and R̂ur
τ0 ∣τi−1

is the correlation function data,
and i and j are user-defined indexes. According to (9), the
above matrix satisfies the relation.

R̂yr
τ0∣τi−1

= ΓRxr
τ0
+ T0∣i−1R̂

ur
τ0∣τi−1

11

In the formula, vector Rxr
r0 consists of data from the state

cross-correlation function.

Rxr
r0 = Rxr τ0 Rxr τ1 ⋯ Rxr τj−1 12

C(z) P(z)
r1

r2

w u v y+
−

+
+

+
+

+
+

Hc(z) Hp(z)

Figure 1: Schematic diagram of closed-loop system.
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The extended observation matrix and the lower triangu-
lar block Toeplitz matrix are defined as follows:

Γ = Cp CpAp ⋯ CpAi−1
p

T
, 13

T0∣i−1 =

Dp 0 ⋯ 0
CpAp Dp ⋯ 0
⋮ ⋮ ⋱ ⋮

CpAi−2
p Bp CpAi−3

p Bp ⋯ Dp

14

By applying the one-step displacement process, the dis-
placement equation corresponding to (11) can be defined as

R̂yr
τ1∣τi

= ΓApRxr
τ0
+ T0∣iR̂

ur
τ0∣τi

15

In the formula, the matrix T0∣i can be added to the left of
the T0∣i−1 with a column of zeros, as follows:

T0∣i =

0 Dp 0 ⋯ 0
0 CpAp Dp ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮

0 CpAi−2
p Bp CpAi−3

p Bp ⋯ Dp

16

Similarly, a zero line extension is added to the bottom of
the R̂ur

τ0∣τi−1
to obtain the representation of R̂ur

τ0∣τi
.

3.2. Deletion of Input Items Based on Null Space Projection.
Although the range of the extended observable matrix Γ
and the Toeplitz matrix T0∣i−1 is contained in the R̂yr

τ0∣τi−1
of

(11), the range of T0∣i−1 can be deleted by zero space projec-
tion. So the range of the extended observability matrix Γ
can be obtained. The main reason is that the null space pro-
jection; before feature extraction, the feature of zero space
projection extracts the feature projection on nonzero vertex
position, and the characteristics of complex single vertex
extraction problem were simplified into any nonzero vertex
extraction, which is a simplified algorithm of computing pro-
cess. Since the orthogonal projection matrix of the row space
of the partitioned Hankel matrix R̂ur

τ0∣τi−1
can be computed, the

projection matrix is first defined as follows:

∏
ur

τ0∣τi−1

= Inr j − R̂ur
τ0∣τi−1

T
R̂ur
τ0∣τt−1

R̂ur
τ0∣τi−1

T †
R̂ur
τ0∣τi−1

17

Theorem 1. R̂yr
τ0∣τi−1

, R̂ur
τ0∣τi−1

, andT0∣i−1 are defined by the above
formula, and ∏ur

τ0∣τk
is defined according to (17) as follows:

∏
ur

τ0∣τk

= Inr j − R̂ur
τ0∣τk

T
R̂ur
τ0∣τk

R̂ur
τ0∣τk

T †
R̂ur
τ0∣τk

18

Then,

T0∣i−1R̂
ur
τ0∣τi−1 ∏

ur

τ0∣τk

= 0 19

In the formula, R̂ur
τ0∣τk

∈ℛnu k+1 ×nr j,τi−1 ≤ τk ≤ τl.

Proof. For τk = τi−1, (17) is brought into (19). For τi−1 < τk,
for example, τk = τi−1+s, item T0∣i−1 can be obtained by
extending zero column to the right side of the matrix.

Ts
0∣i−1 =

Dp 0 ⋯ 0 0 ⋯ 0
CpAp Dp ⋯ 0 0 ⋯ 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮

CpAi−2
p Bp CpAi−3

p Bp ⋯ Dp 0 ⋯ 0
20

Similarly, R̂ur
τ0∣τi−1

can obtain R̂ur
τ0∣τi−1+s

by adding zero line
vectors. For all s ≥ 0, Ts

0∣i−1 is a fixed value, and then available

Ts
0∣i−1R̂

ur
τ0∣τi−1+s

= T0∣i−1R̂
ur
τ0∣τi−1

,

Ts
0∣i−1R̂

ur
τ0∣τi−1+s ∏

ur

τ0 ∣τk

= 0
21

The required proof results can be obtained by replacing
Ts
0∣i−1R̂

ur
τ0∣τi−1+s

with T0∣i−1R̂
ur
τ0∣τi−1+s

. τk > τl is not allowed here
to ensure that (17) satisfies the singularity.

3.3. System Dynamics Estimation. The direct result obtained
in Theorem 1 is that the same projection ∏ur

τ0∣τi
removes the

fixed items including T0∣i−1 and T1∣i from R̂yr
τ0 ∣τi−1

and R̂yr
τ0∣τi

by the right projection of the (11) and (15), and then
the following equations can be obtained:

R̂yr
τ0∣τi−1 ∏

ur

τ0 ∣τi

= ΓRxr
τ0 ∏

ur

τ0∣τi

, 22

R̂yr
τ1∣τi ∏

ur

τ0∣τi

= ΓApRxr
τ0 ∏

ur

τ0∣τi

23

Therefore, from the (22) on the right side of the singular
value decomposition, estimation is obtained by the extended
observability matrix Γ. The calculation form is

R̂yr
τ0∣τi−1 ∏

ur

τ0∣τi

= Un U s

〠
n

0

0 〠
s

VT
n

VT
s

24

Γ̂ =Un 〠
1/2

n

25

According to (22) and (23), the minimization problem of
the least squares solution is as follows:
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J = arg min
Ap

ApΓ†R̂
yr
τ0∣τi−1 ∏

ur

τ0∣τi

− Γ†R̂yr
τ1∣τi ∏

ur

τ0∣τi

Âp = 〠
−1/2

n

UT
n R̂

yr
τ1∣τi ∏

ur

τ0∣τi

Vn 〠
−1/2

n

26

The system matrix Cp can be calculated by using the ny
rows of the extended observation matrix.

Ĉp = Γ̂ 1 ny , : 27

Based on the estimation of Ap and Cp, the entire problem
becomes linear in the unknown Bp and Dp. Then, the esti-
mated form of the output y k is

ŷ k = ĈpÂpx̂ 0 + u k T ⊗ Iny vec D̂p

+ 〠
k−1

t=0
u k T ⊗ ĈpÂ

k−t−1
p vec B̂p

28

In the formula, the estimates of Bp and Dp can be
obtained by solving the linear least squares method.

min
Bp ,Dp

 
1
N

〠
N−1

k=0
y k − φT k θ 2

2 29

In the formula, where

φT k = u k T ⊗ Iny 〠
s−1

k=0
u k T ⊗ ĈpÂ

k−s−1
p ,

θ = vec D̂p vec B̂p
T

30

3.4. LQ Computing Framework. According to (20), the
expansion matrix, which constitutes a lower triangular
matrix, that is, the matrix LQ decomposition, shows that
the matrix expansion is used in the matrix of right to sat-
isfy the characteristics. Therefore, select the LQ decompo-
sition of matrix multiplication calculation. By constructing
projection matrices and replacing (11) and (15) projections,
R̂yr
τ0∣τi−1

, ∏ur
τ0∣τi

, and R̂yr
τ1∣τi

∏ur
τ0∣τi

can be computed more effi-
ciently by following LQ decomposition:

R̂ur
τ0∣τi

R̂yr
τ0∣τi−1

=
L11 0
L21 L22

QT
1

QT
2

, 31

R̂ur
τ0∣τi

R̂yr
τ1∣τi

=
L11 0
L21 L22

QT
1

QT
2

32

Then the output R̂yr
τ0∣τi−1

can be calculated as

R̂yr
τ0 ∣τi−1 ∏

ur

τ0∣τi

= ΓRxr
τ0
+ T0∣i−1L11QT

1 = L21QT
1 + L22QT

2 33

Formula (33) is multiplied byQ2 to get L22 = ΓRxr
τ0
Q2 and

Im L22 = Im Γ . The algorithm then performs L22QT
2 and

L22Q
T
2 at R̂yr

τ0∣τi−1
∏ur

τ0∣τi
and R̂yr

τ1∣τi−1
∏ur

τ0∣τi
, respectively. In addi-

tion, the singular value decomposition is performed on L22
QT

2 to achieve the estimation of the extended observation
matrix Γ.

3.5. Subspace Model Identification Process. The proposed
closed-loop subspace identification algorithm for the con-
crete calculation process is shown in Figure 2. First, the
closed-loop prediction of the parameters of the Γ, L̂, and Ĝ
matrices is obtained based on the subspace projection
method. Then, based on the matrix operation and singular
value decomposition process, the values of X̂, A, C, and R̂
are obtained. Finally, the system parameter matrices B and
D are solved by the least squares method.

In Figure 2, Γ̂ can be obtained according to (25), and
B can be calculated according to the (31-32). X̂ is the state
vector matrix. A, B, C, and D are the state space matrices
(for calculation process, see Section 2.3—system dynamic
estimation part). T̂ and R̂ can be calculated according to
(14) and (33), respectively.

4. Experimental Analysis

4.1. Model of UAV Servo Induction Motor. Several different
induction UAV servo motor models have been described in
the literature [6]. The model of the induction motor used in
this experiment is

dX
dt

=AX +DU,

Y =CX + BU
34

In the formula, X = I, ϕ is the inductance matrix, U =V
is the input matrix, and Y = I is the output matrix. And
there are

Input and output data 𝜇k and 𝛾k

ˆˆ ˆ

ˆ

X̂ ˆA, C

B, D

Projection of subspace

Matrix operations

SVD
decomposition

Matrix
operations

Least square
method

LwΓ

Γ

T

R

Figure 2: Closed-loop subspace identification process.
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A =
−

1
στs

+ 1 − σ

στr

Lm
σLsLrτr

+ j
Lm
LsLr

pωr

Lm
τr

−
1
τr

+ jpωr

,

B = 1
στs

0
T

, C = 1, 0 , D = 0

35

In the formula, σ = 1 − L2m/LsLr , τs = Ls/Rs, and τr =
Lr/Rr . Lm is excitation inductance, Lr is rotor inductance,
Ls is stator inductance, Rs is stator resistance, and Rr is
rotor resistance.

Here, the Bode amplitude diagram of the Gauss white
noise of the induction motor under the Matlab environment
is compared with the experimental performance. The hard-
ware settings are the following: memory for the Kingston
8G ddr4-2400GHz processor, i7-6400HQ2.8GHz, and sys-
tem simulation platform for the selection of win7 ultimate,
matlab2014a. The input is generated by filtering a white noise
with a fourth-order lowpass Butterworth filter that has a cut-
off frequency of 0.8 times the Nyquist frequency and with the
zero mean white noise signal disturbance. We select SOPIM
and SIMPCA as comparison algorithms, which are shown
in [23] and [24].

Experimental parameter settings are the following: Rs =
10Ω, Rr = 6 58Ω, Lr = 0 31H, Ls = 0 31H, and ωr = 157 08
rad/s.The sampling period used is equal to 10−4 s. According
to the experimental parameters, the following induction
motor model parameter matrices can be obtained:

A =
−200 32 247 02 + j3656 16
5 73 −21 23 + j314 16

, 36

The number of conditions can be calculated as

cond A = 322 47 37

It can be seen that the conditional number of the matrix
is much larger than 1; therefore, the matrix is ill conditioned.
In this case, the instant messaging model is chosen to illus-
trate the phenomenon of morbidity.

In Figures 3–5, three kinds of Bode amplitude tracking
curves of the induction motor model are given. They are
SOPIM estimation curve, SIMPCA estimation curve, and
the estimation curve of our algorithm, respectively. In each
figure, we perform 50 times Monte Carlo simulations of esti-
mating the system to examine the accuracy of the algorithm
in this paper.

As shown in Figures 3–5, the Bode amplitude tracking
curve shows that the proposed algorithm outperforms the
SOPIM estimation results and the SIMPCA estimation
results in amplitude tracking. At the same time, SIMPCA
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Figure 3: SOPIM Bode amplitude tracking curve.

10−3 10−2 10−1 10−0 101

(Rad/sec)

−80

−60

−40

−20

0

20

40

60

80
System bode chart

(d
B)

True plant
SIMPCA

Figure 4: SIMPCA Bode amplitude tracking curve.
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Figure 5: The algorithm of this paper Bode amplitude tracking
curve.
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estimation results are better than SOPIM estimation results,
mainly because Column weighting for SIMPCA is intro-
duced, while SOPIM uses orthogonal projection only. This
is the main reason for zero space projection method based
on the estimation of correlation function to fill the block
Hankel matrix being adopted in this paper. The Bode ampli-
tude tracking curves among the three algorithms are depicted
in Figure 6, which shows the effectiveness of our method.

To confirm that the Bode amplitude tracking results
can be obtained, the root locus simulations of the SOPIM
algorithm, the SIMPCA algorithm, and the proposed estima-
tion algorithm are performed. The curves obtained are
shown in Figures 7–9.

Figures 7–9 illustrate that the red “+” symbol is the real
trajectory of the model, and the real trajectory is concen-
trated on the right side of the chart. In the comparative test
of three algorithms, the SOPIM algorithm tracks the most

points in the graph, which shows that the locus distribution
is dispersed. There are relatively few points near the true tra-
jectory of the “+” symbol, indicating the poor accuracy of
trajectory tracking. The trajectory distribution of SIMPCA
algorithm in Figure 8 is relatively concentrated. The distri-
bution of our algorithm is the most concentrated, and the
main results in the distribution of real track near the “+”
sign, which indicates that this algorithm with respect to the
root locus simulation has higher tracking accuracy com-
pared with the SOPIM algorithm and SIMPCA algorithm,
as shown in Figure 9.

4.2. Hardware Verification Experiment. The hardware test
platform is under the condition of single-phase inverter unit
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Figure 6: Comparison of Bode amplitude tracking curves among
the three algorithms.
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and controlled rectifier of model PM201CL1A061. Platform
identification algorithm is DSP27334 main control chip.
The production company is TI. The simulation time connec-
tion circuit diagram is shown in Figure 10. The following
parameters are P_N = 250 MW motor rated power, rated
power factor cos_ N = 0 9, rated voltage U_N = 15 75 kV,
rated speed of n_N = 250 r/min D_a1=8500mm, the outside
diameter of the stator core, stator core diameter
D_i1=7500mm, slot number Z = 360, the stator slot width
b_s = 24 7 mm, damping bar diameter d_B = 25 mm, damp-
ing number n_B = 7, and air cooling mode.

Because the model belongs to the serial working mode,
the proposed algorithm can realize simultaneous identifi-
cation of magnetizing inductance and rotor resistance
with more relative storage. But with the development of
science and technology of hard disk, the problem can be
ignored. At the time t = 8 s, the motor speed changes from
750 r/min to 1200 r/min step by step. Moreover, the rotor
resistance synchronous identification error and excitation
inductance identification results at this time are shown
in Table 1.

Table 1 shows the changes of motor speed with the
step changing. The identification results for the algorithm
of the motor rotor resistance identification error and the
synchronous excitation inductance error change in a pas-
sage of time, because the speed of order at t = 8 s changes step
by step. Here, we start recording the identification error from
t = 9 s. According to the experimental results, the identifica-
tion error of the algorithm decreases as time goes by, which
shows that the algorithm has better convergence.

5. Concluding Remarks

This paper proposed a kind of zero space projection based on
correlation function estimation of closed-loop subspace
identification method. Through the correlation function esti-
mation and zero space followed by projection, block Hankel
matrix of identification framework was filled by the numeri-
cal calculation and LQ decomposition to achieve multiplica-
tion projection, get unknown device estimation of dynamic
system model. The experimental results verify the effective-
ness of the proposed method. The next step will focus on
the closed-loop system combined with the subspace identifi-
cation method for the control problem of UAV.
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