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Abstract—Aiming at the problem of high complexity and poor real-time performance of the traditional min-
imum variance (MV) algorithm, a low-complexity minimum variance algorithm combined with power
method is proposed. Firstly, the echo data is transformed into beam domain by discrete cosine transform and
the dimension reduction parameter is determined according to the data of scanning lines. Secondly, the max-
imum eigenvalue and corresponding eigenvector of sample covariance matrix are obtained by the power
method to reduce the complexity of eigenvalue decomposition. Finally, by ignoring low-energy echo signal,
the inversion of covariance matrix can be simplified to construct a new weighted vector, which can reduce the
complexity of MV. The Field II simulation results show that the proposed algorithm has better resolution,
contrast ratio and efficiency than the traditional MV algorithm, and outperforms the minimum variance
algorithm based on eigenvalue decomposition (ESBMV) in resolution and efficiency.
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1. INTRODUCTION
Ultrasound imaging system mainly includes trans-

mitting, receiving, beamforming and imaging mod-
ules [1]. The beamforming module is the core of the
whole system, which directly determines the imaging
quality [2]. The traditional delay and sum (DAS) is the
simplest and most widely used algorithm in ultrasound
imaging beamforming [3, 4]. However, the DAS algo-
rithm has poor performance in resolution and contrast
ratio, so the adaptive beamforming technology is pro-
posed in recent years [5–8]. The typical adaptive
beamforming method includes the minimum variance
algorithm (MV) [9] and the generalized sidelobe can-
celler (GSC) algorithm [10, 11]. The idea of MV is to
minimize the output power of beamformer while
keeping the total gain constant, so as to reduce the
interference signals in unexpected directions and
obtain the optimal weighted vector [12, 13]. Based on
the minimum power distortion response beamformer,
the GSC is proposed to minimize the output power
and suppress residual noise [14, 15].

Compared with the traditional DAS algorithm,
adaptive beamforming algorithms can significantly
improve the resolution and contrast ratio [16]. How-
ever, adaptive algorithms need to calculate the
dynamic weighting vectors in real time, which involve

complex matrix operations [17]. The high complexity
seriously affects the real-time performance of adaptive
algorithms and reduces the robustness. Therefore,
many scholars are committed to reduce the complex-
ity of adaptive algorithm. Fuhrmann used Toeplitz
matrix to construct sample covariance matrix, and
simplified the matrix inversion to decrease the com-
plexity of adaptive algorithms [18]. Park et al. pro-
posed the fast inversion of sample covariance matrix
using QR decomposition technique [19]. Kim et al.
utilized Principal Component Analysis (PCA) to
extract the eigenvectors corresponding to the larger
eigenvalues in the covariance matrix to form the
dimension reduction matrix [20, 21]. The adaptive
space-time reduced-rank interference suppression
least squares algorithm based on joint iterative optimi-
zation of parameter vectors was proposed to solve the
optimal basic set of reduced-rank processing [22].
Albulayli put forward a hybrid adaptive and non-adap-
tive algorithm to reduce the computation of adaptive
algorithms [23]. The Low complex subspace MV
beamformer ignored part of the row data in original
covariance matrix, but the covariance matrix was not
a square matrix [24].

To further reduce the complexity of traditional MV
algorithm, a low-complexity minimum variance algo-
204
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rithm (LCMV) combined with power method was
proposed in this paper. Firstly, the dimension of cova-
riance matrix is reduced by discrete cosine transform
(DCT) according to the scanning lines data. Secondly,
the largest eigenvalue and its corresponding eigenvec-
tor are extracted by power method while some low-
energy signal data are ignored. Lastly, the matrix
inversion is simplified to vector multiplication which
greatly reduces the complexity. Besides, Field II [25] is
introduced to inspect the effectiveness of the proposed
algorithm.

This paper is organized as follows: section 2 reviews
the MV, minimum variance algorithm based on eigen-
value decomposition (ESBMV) briefly and introduces
the proposed LCMV in detail. In section 3, the point
targets and cyst phantom are simulated, the point tar-
get with different center frequencies and the complex-
ity of different algorithms are also compared and ana-
lyzed. The conclusion is drawn in section 4.

2. METHOD

2.1. Minimum Variance Algorithm

Suppose a linear array which consists of N ele-
ments, and its beamforming output is given by:

(1)

where k is the k-th sampling point.
 is the echo data

after focus delay, and  is the delay time applied to
each element signal,  is the transposition operation.

 is the adaptive weighting

vector, and  is the conjugate transposition opera-
tion.

According to the principle of MV, the solution of
the weighting vector is:

(2)

where  is the minimum operation,

 is the  sample covariance matrix,
and  is the  direction vector, then the
problem (2) can be solved by the Lagrangian multiplier
method to obtain the optimal weighting vector :
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The output of MV is:
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2.2. Minimum Variance Algorithm
based on Eigenvalue Decomposition

The eigenvalue decomposition of the sample cova-
riance matrix is conducted by:

(5)

where  =  is the signal subspace, num is
the dimension of signal subspace,  =

 is the noise subspace.
 are the eigenvectors corresponding to

the N eigenvalues  of sample covariance
matrix, which satisfy .  =

 and  = 
are the diagonal matrices composed of corresponding
eigenvalues. The optimal weighting vector  can be
obtained by projecting the MV weighting vector into the
signal subspace:

(6)

Although ESBMV is obviously improved in resolu-
tion and contrast ratio, it involves the computationally
expensive operation of eigenvalues and eigenvectors.

2.3. Low-complexity Minimum Variance Algorithm 
based on Power Method

The DCT is often used to construct the 
transformation matrix, where L is the size of sub-
array, p is the dimension reduction parameter. The
transformation matrix is as follows:

(7)

The matrix T satisfies , where I is the unit
matrix. The selection of p is based on the principle of
minimizing the distortion to ensure the imaging quality
of LCMV algorithm, which satisfies .
With the increase of p, the result is closer to the origi-
nal image, but the dimension of covariance matrix is
also increased, which raises the complexity. There-
fore, the mean square error (MSE) is introduced,
which is defined as:

(8)
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where  is the original image element,  is
the transformed image element, i, j are the variables of
length and width, and W, H are the length and width
of the image respectively. The result will be better
when MSE is smaller. See section 3.4 for the specific
selection of p.

Since the echo signal of spatially-smoothed array is
multiplied by the transformation matrix T, the echo
signal of beam domain can be obtained. The sample
covariance matrix is gained by extracting the partial
beam domain data and the dimension is changed from

 to . So the complexity of matrix
inversion after the transformation changes from 
to . Taking l-th sub-array as an example,
the signal is transformed as follows:

(9)

where  is the sub-array signal in beam domain,
and the sample covariance matrix is correspondingly
changed to:

(10)

The proposed LCMV algorithm is simplified by the
improved power method for the inversion and the
eigenvalue decomposition of the beam domain covari-
ance matrix. The maximum eigenvalue of the covari-
ance matrix and its corresponding eigenvector are
obtained by the power method. Set , the
iterative operation is performed as follows:

(11)

where  is the eigenvector after (i+1)-th iteration,
and  is the maximum element solving operation.
After every iteration, the obtained vector is normalized
into the next iteration. Taking i-th iteration as an
example, the vector  is obtained and the normaliza-
tion process  is conducted. Then the
iterative operation is repeated by equation (11), and

 is the end condition of the iterative
operation.  can be selected according to the accuracy
requirement, in this paper ε is set to 0.001.

Since the eigenvalues of the covariance matrix rep-
resent the energy of the received signal, the signal with
large eigenvalue corresponds to strong signal energy.
Therefore, some low-energy signals can be ignored to
simplify the matrix inversion. The eigenvalues corre-
sponding to noise subspace take the same value when
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the trace of covariance matrix is invariant, so the
energy of ultrasound signal keeps constant:

(12)

where ,

 q is the number of the eigen-

values corresponding to signal subspace, the inversion
of sample covariance matrix after diagonal loading can
be reduced to:

(13)

In order to further simplify the equation (13), par-
tial beam domain signal can be ignored and set .
Then the inversion of covariance matrix is converted
into vector multiplication, which can reduce the com-
plexity to :

(14)

Only the largest eigenvalue and corresponding
eigenvector are used in Eq. (14), that is ,

. The maximum eigenvalue  and the cor-
responding eigenvector  are obtained by the itera-
tive processing of the power method. The improved
weighting vector  is obtained by substituting
Eq. (14) into Eq. (3), and the weighting vector is pro-
jected into the eigenvector . According to the
orthogonal characteristics between eigenvectors, the
noise signal is eliminated and the optimal weighting
vector  is obtained:

(15)

where  is the beam domain direction vector.

3. SIMULATION EXPERIMENTS
In this section, the traditional DAS, MV, ESBMV

and proposed LCMV algorithms are simulated with
point targets and cyst phantom by Field II. The simu-
lation parameters are listed in Table 1. All the algo-
rithms have used the spatial smoothing and diagonal
loading technique.

To inspect the robustness of these algorithms,
10 dB Gauss white noise is added for the inspection.
Besides, the point targets simulation is carried out
with different center frequencies.

+ + +
∧

=

λ = λ = = λ
 

= − λ − +  


…1 2 1

1

1 trace( ) ,
1

q q p
q

b i
i

R
p q

+ + +λ = λ = = λ = − +…1 2 1 [1/( 1)]q q p p q

1
trace( ) ,

q

b i
i

R
∧

=

 
− λ = α 

 


1
1

1
.

q
i

b i
i i

I
−∧

−

=

 λ − α = α −  λ   
R e eH

i

1q =

2(( 1) )O p +

1 1

−∧
− λ − α   = α −   λ   

1
1 1

1

.H
b IR e e

max1λ = λ
max1 =e e

max
λ

max
e

ibw

max
e

ibmvw

max max max max

∧
−

∧
−

= =
1

1

,H H b b
ibmv ib

H
b b b

R aw e e w e e

a R a

b =a Ta
ACOUSTICAL PHYSICS  Vol. 66  No. 2  2020



A LOW-COMPLEXITY MINIMUM VARIANCE ALGORITHM COMBINED 207

Table 1. Simulation parameters

Parameters Value

Transducer number, N 64
Subarray length, L 32
Center frequency, f0/MHz 7
Sampling frequency, fs/MHz 100
Element pitch, mm 0.11
Element height, mm 5
Sound velocity, m/s 1540
Dynamic range, dB 60
3.1. Point Targets Simulation

15 target points are set in the simulation, and the
axial distance is between 30 and 80 mm. Among them,
there are 3 point targets at 40 and 60 mm, and 1 target
point at other positions. The image results are shown
in Fig. 1, from which we can see that DAS owes the
worst performance and serious lateral artifacts. The
imaging quality of MV improves a little compared with
DAS. ESBMV further improves the resolution based
on MV and greatly reduces the artifacts. Compared
with ESBMV, the proposed LCMV has better resolu-
tion and clearer far-field target points. Moreover,
10 dB noise is added to simulate the practical occa-
sions. As shown in Fig. 2, white spots appear in back-
ground area, and the contrast becomes worse.

To intuitively investigate the imaging quality of
point targets, 3 target points nearest to the focus are
selected for lateral resolution analysis. The results are
shown in Figs. 3a, 3b. Compared with Fig. 3a, the total
energy difference of the echo signal is reduced and the
sidelobe is raised in Fig. 3b, which indicates that the
ACOUSTICAL PHYSICS  Vol. 66  No. 2  2020

Fig. 1. Point targets imaging without noise.
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discrimination between the background and the target
regions is decreased after adding noises. The mainlobe
width at the normalized amplitude of –6 dB and the
first sidelobe peak are selected to represent the imag-
ing quality of point targets. Detailed results are shown
in Table 2.

From Table 2, the indicators of DAS are apparently
worse than adaptive algorithms. No matter whether
there is noise or not, the mainlobe width of the pro-
posed LCMV algorithm is better than that of MV and
ESBMV. After adding noises, the mainlobe width and
sidelobe peak of all algorithms become worse. Com-
pared with MV, the first sidelobe peak of LCMV is
reduced by 11.29 and 25.85 dB under noise and non-
noise conditions, respectively. Besides, the sidelobe of
LCMV is similar to that of ESBMV algorithm.

3.2. Cyst Phantom Simulation

The cyst phantom is set 3 mm radius circular region
located at the axial distance of 25 mm in a speckle
medium. There are 100000 noise scattering points
randomly distributed in the background area. The
imaging results without or with 10 dB noise are shown
in Figs. 4 or 5 respectively.

As shown in Fig. 4, compared with adaptive algo-
rithms, the performance of DAS is very poor, and
there are obvious white artifacts in the cyst phantom
area. The imaging quality of MV is better than that of
DAS. Compared with MV, the cyst phantom area of
ESBMV and LCMV are darker, and they have better
contrast ratio. As shown in Fig. 5, the imaging quality
of all algorithms are degraded obviously after adding
noise, and detailed results are shown in Tables 3 and 4
respectively. Contrast ratio (CR) is the absolute value
of the difference between the mean power of cyst
Fig. 2. Point targets imaging with noise.
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Fig. 3. (a) The resolution at 40 mm without noise. (b) The resolution at 40 mm with 10 dB noise.
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Fig. 4. Cyst phantom imaging without noise.
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region and the mean power of background area [26].
Standard deviation represents the robustness of algo-
rithms, the smaller the standard deviation is, and the
better the robustness is [27]. Contrast noise ratio
(CNR) is the quotient of CR and standard deviation.

As shown in the Tables 3 and 4, adaptive algorithms
have better CR than traditional DAS without noise.
Table 2. Mainlobe width at axial distance of 40 mm

Methods
Mainlobe width (–dB)/m

without noise 10 dB

DAS 2.58 2.

MV 1.70 1.

ESBMV 1.67 1.

LCMV 1.58 1.
Compared with MV, the CR of ESBMV and LCMV is

increased by 6.93 and 4.83 dB respectively. From the

mean power of cyst region, it can be seen that LCMV

has stronger noise suppression than ESBMV. How-

ever, the noise suppression in the background region

of ESBMV is stronger than that of LCMV in the cyst

area, resulting in a lower background mean power, so
ACOUSTICAL PHYSICS  Vol. 66  No. 2  2020

m First sidelobe peak/dB

 noise without noise 10 dB noise

61 –18.46 –18.68

88 –26.80 –25.68

76 –53.35 –37.48

64 –52.65 –36.97
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Fig. 5. Cyst phantom imaging with noise.
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the CR of LCMV is slightly lower than that of
ESBMV.

3.3. Different Center Frequencies Simulation
In the actual ultrasound detection, ultrasound

probes with different center frequencies are often used
according to different occasions. For example, the
convex array probes used in abdominal test usually
needs different frequencies of 2.5, 3.5 and 5.0 MHz. The
intracavity probe is usually 6.5 MHz, and the linear
probe for blood vessel detection is usually 7.5 MHz. In
some special occasions, some high frequency linear
probe can reach up to 10 MHz. In order to further
inspect the proposed LCMV, 4 representative probe
frequencies are selected for point target simulation,
and the other parameters are the same with Table 1. The
results are shown in Fig. 6.

From Fig. 6 we can see, the resolution of different
algorithms is increased and the artifacts are decreased
with the increase of center frequency. Compared with
other methods, LCMV can maintain better perfor-
mance at different center frequencies and can be suit-
able for different detection objects. The 5.0 MHz cen-
tral frequency and 20.5 mm axial distance are selected
for the lateral resolution analysis, and the result is
shown in Fig. 7. As shown in Fig. 7, the resolution of
adaptive algorithm is superior to traditional DAS.
ACOUSTICAL PHYSICS  Vol. 66  No. 2  2020

Table 3. Contrast ratio of cyst phantom imaging without noi

Methods
Mean power 

of cyst region/dB

Mean pow

of background re

DAS –41.89 –17.81

MV –47.61 –22.85

ESBMV –60.32 –28.64

LCMV –61.96 –32.38
Compared with MV and ESBMV, the proposed
LCMV has the best resolution because of its narrowest
mainlobe width and lowest sidelobe, which is consis-
tent with the result of Fig. 6.

3.4. Algorithm Complexity Analysis
There are a lot of complex matrix operations in

adaptive algorithms, whose complexity can be charac-
terized by accumulating the complexity of matrix
operations involved in algorithms. The complexity of
common operations for N dimensional matrix is
shown in Table 5.

It can be found from Table 5 that matrix inversion
and eigenvalue decomposition have the highest com-
plexity. DAS only involves matrix addition, so the

complexity is . MV involves the inversion of the
sub-array echo signal covariance matrix, and the com-

plexity is . ESBMV includes the inversion of
covariance matrix, eigenvalue decomposition, eigen-
value sorting and weighting vector projection opera-

tion. The complexity of ESBMV is .
LCMV converts the inversion of reduced dimension
covariance matrix into the vector multiplication. By
improving the power method to obtain the maximum
eigenvalue and corresponding eigenvector, the com-
plexity of eigenvalue decomposition is reduced to

( )O N

3
( )O L

3 2
(3 2 )O L L+
se

er 

gion/dB
Standard deviation/dB CR/dB CNR

7.21 24.07 3.34

8.14 24.75 3.04

12.87 31.68 2.46

11.68 29.58 2.53
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Table 4. Contrast ratio of cyst phantom imaging with noise

Methods
Mean power 

of cyst region/dB

Mean power 

of background region/dB
Standard deviation/dB CR/dB CNR

DAS –27.35 –17.79 6.77 9.56 1.41

MV –30.88 –22.14 7.16 8.74 1.22

ESBMV –31.99 –24.92 8.44 7.07 0.84

LCMV –34.08 –26.42 8.14 7.66 0.94
. Besides, the weighting vector projection oper-
ation is involved. Therefore, the computational com-

plexity of LCMV is . In this paper, 

is the number of elements,  is the number of
sub-array elements after spatial smoothing. p is the
dimension reduction parameter of sample covariance
matrix. To select the optimal p, the MSE and effi-
ciency with different p are given in Fig. 8.

As shown in Fig. 8, the dimension reduction

parameter  can not only effectively reduce the
complexity, but also narrow the difference between the
dimension reduction data and the original data, thus
ensuring the image quality of the LCMV algorithm.

2
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Fig. 6. The resolution of 5
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Therefore, the proposed algorithm chooses . To
further inspect the efficiency, the imaging time of
point targets and cyst phantom are calculated in Table 6.
The software platform is MATLAB R2017b, and the
computer configuration is as follows: Intel i7-8700K
4GHz CPU, 8GB DDR-2400MHz.

The detection of the point targets ranges from 30 to
80 mm, and that of the cyst phantom is from 20 to
35 mm. The sampling points of the two objects are
obviously different, so the imaging time of the point
targets is longer than that of cyst phantom. As can be
seen from Table 6, the imaging time of DAS is signifi-
cantly less than that of adaptive algorithms due to its
simple operation. Compared with MV, LCMV

8p =
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Fig. 7. The comparison between different center frequencies.
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Table 5. The complexity of matrix operations

Matrix operations Complexity levels

Matrix addition O(N)

Eigenvalue sorting O(N2)

Vector multiplication O(N2)

Matrix inversion O(N3)

Eigenvalue decomposition O(N3)

Fig. 8. The efficiency and MSE with different p.
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Table 6. The comparison of imaging time

Methods
Efficiency/s

point targets cyst phantom

DAS 2.61 1.12

MV 31.36 16.13

ESBMV 83.60 39.30

LCMV 23.86 11.67
reduces the dimension of covariance matrix, and sim-
plifies the matrix inversion, so the imaging time of
point targets and cyst phantom is reduced by 23.92 and
27.65% respectively. Compared with ESBMV, the
imaging time of point target and cyst phantom is
reduced by 71.46 and 70.31% respectively, because
LCMV simplifies matrix inversion and eigenvalue
decomposition.

4. CONCLUSION

A low-complexity minimum variance algorithm
(LCMV) based on power method is proposed in this
paper, which can further improve the image quality
and reduce the complexity compared with traditional
MV algorithm. The proposed algorithm can not only
determine the dimension reduction parameters of
covariance matrix based on ultrasonic echo data, but
also can reduce the complexity of eigenvalue decom-
position and matrix inversion by power method,
which greatly improves the imaging efficiency.

The simulation experiments indicate that the
LCMV algorithm has better resolution and efficiency
than MV and ESBMV algorithm. Besides, the LCMV
maintains lower artifacts and higher resolution than
other mentioned algorithms at different center fre-
quencies, which can be widely applied to different
detection occasions.
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