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Abstract: A joint resource allocation algorithm to minimize the system outage probability is proposed
for a decode-and-forward (DF) two-way relay network with simultaneous wireless information and
power transfer (SWIPT) under a total power constraint. In this network, the two sources nodes
exchange information with the help of a passive relay, which is assumed to help the two source nodes’
communication without consuming its own energy by exploiting an energy-harvesting protocol,
the power splitting (PS) protocol. An optimization framework to jointly optimize power allocation
(PA) at the source nodes and PS at the relay is developed. Since the formulated joint optimization
problem is non-convex, the solution is developed in two steps. First, the conditionally optimal PS
ratio at the relay node for a given PA ratio is explored; then, the closed-form of the optimal PA in
the sense of minimizing the system outage probability with instantaneous channel state information
(CSI) is derived. Analysis shows that the optimal design depends on the channel condition and
the rate threshold. Simulation results are obtained to validate the analytical results. Comparison
with three existing schemes shows that the proposed optimized scheme has the minimum system
outage probability.

Keywords: two-way relay; decode-and-forward; energy harvesting; joint resource allocation

1. Introduction

Two-way relay (TWR) communications [1,2] to extend transmission range and improve
communications reliability have been studied extensively. The traditional TWR network with two
source nodes exchanging information between each other via a relay requires four time slots. Combined
with appropriate network coding, the number of time slots can be reduced to two [3]. Two of the most
commonly-used relay strategies are the amplify-and-forward (AF) [4] and DF [5] protocols. With the
AF and DF protocols, plenty of significant research efforts designing optimal resource allocation
schemes have been proposed, aiming at further improving essential performance objectives for such
networks. For example, a power allocation (PA) scheme for an AF-TWR system and its achievable
rates over Rayleigh fading channels were studied in [6]. In [7], based on maximizing the objective rate
under a total power budget, a power allocation method for a specific DF relay network by exploiting
physical-layer network coding was proposed. In [8], optimization of PA and time allocation (TA)
was investigated to minimize the system outage probability to support asymmetric data rates for
DF-TWR networks.
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The aforementioned works all assumed that the relay spends its own power to support the TWR
transmission. In most practical cases, it will be very attractive if the relay can harvest the energy it needs
for relaying the information between the source nodes. One promising energy-harvesting technique
is SWIPT, with which the relay performs energy harvesting (EH) by scavenging radio-frequency
signals, typically transmitted by the source nodes, and then utilizes the harvested energy to forward
information. Recent work has studied AF-TWR networks with SWIPT extensively. An AF-TWR with
SWIPT that employs the PS protocol is proposed in [9] together with the derivation of tight upper- and
lower-bounds of the outage probability and the ergodic capacity of the network. To further improve
the AF-TWR performance, a joint optimization of the PS ratio and the transmission PA based on
minimizing the outage probability was studied in [10]. A distributed energy beamforming scheme was
proposed in [11] to maximize the achievable sum-rate of AF-TWR network with SWIPT. There are also
some research efforts of SWIPT based on the DF-TWR network; for example, an energy-harvesting
protocol for three-step TWR was proposed and analyzed [12]. A joint optimization scheme for a
DF-TWR with energy harvesting was developed in [13].

In this paper, we focus on jointly optimizing the PS ratio and the PA ratio for a power-constrained,
two-way relay network with a wireless powered relay that employs the DF protocol, a problem that
has not been studied yet, to our knowledge. The major contributions of our works are summarized as
follows. We form a jointly optimizing PS ratio and PA ratio problem to minimize the system outage
probability in the context of a two-way energy-harvesting relay network that is subject to a total
transmit power constraint. Since this original optimization problem is very difficult to solve, if not
impossible, a two-step solution is developed to obtain a closed-form solution efficiently. Simulation
results are obtained to verify the proposed algorithm and to assess the impact of various network
parameters on system performance. The performances of three existing schemes are also simulated
and compared with that of the proposed scheme.

The remainder of this paper is organized as follows. In Section 2, we describe the model of
the two-way relay network being considered and formulate the joint resource allocation problem,
aiming to minimize the outage probability. Transformation of the joint resource allocation problem to a
two-step optimization problem is described in Section 3. Numerical results are presented in Section 4,
and conclusions are given in Section 5.

2. System Model and Problem Formulation

2.1. System Model

The TWR network under consideration is shown in Figure 1, where two communicating devices
S1 and S2 exchange their messages assisted by a passive relay node (no power is available for its
information forwarding) with energy harvesting ability, denoted as R. It is assumed that there are no
direct links between the two source nodes; thus, the information exchange must rely on the passive
relay, which harvests the energy it needs from the RF signals transmitted by the two source nodes
through the power splitting protocol. We assume all the nodes are single-antenna devices and operate
in a half-duplex mode. In addition, we assume that the channel between any two nodes is reciprocal
and that perfect channel state information is known at all nodes. The transmit power at S1 and S2 is
denoted by P1 and P2, respectively, which share a total power budget constraint P1 + P2 = PT for each
transmission round.

Two consecutive phases are involved to complete each round of information transmission:
a multiple access (MA) phase and a broadcast (BC) phase.
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Figure 1. (a) System model (b) energy-harvesting protocol.

During the MA phase, nodes S1 and S2 broadcast their signals simultaneously to relay R.
The received signal at R in this phase is expressed as:

yR = h1
√

P1x1 + h2
√

P2x2 + na,w (1)

where hi denotes the coefficient of the channel between Si and R and na,w ∼CN
(
0, σ2

a
)

is the noise
generated at the receiver antenna.

The power splitter at R then splits the received signal yR into two portions ρ : (1−ρ), of which
√

ρyR is utilized for energy harvesting, and the remaining portion in the amount of
√

1−ρyR is used
for information decoding. Let the energy conversion efficiency be η. The harvested energy at the relay
is expressed as:

E =
T
2
· ηρ(|h1|2P1 + |h2|2P2 + σ2

a ) (2)

Note that power splitting is done before the received signal is converted from passband to
baseband; hence, the signal in the information decoding (ID) receiver can be expressed as:

yID =
√

1−ρ
(

h1
√

P1x1+h2
√

P2x1+na,w

)
+nb,w (3)

where nb,w∼CN
(
0, σ2

b
)

is the noise generated in the down-conversion process of the received signal [8].
Since in practice, the power of the noise generated at the antenna σ2

a is generally much smaller than the
noise generated in the down-conversion process of the received signal σ2

b , to simplify the derivation,
the noise term σ2

a will be neglected in the following analysis. This kind of assumption has been wildly
used in SWIPT system analysis, such as [9–13].

During the BC phase, the relay exploits one of the decoding methods—physical layer network
coding—to decode yID, and the decoded information is written as xR = x1 ⊕ x2. Then, the relay
exhausts the harvested power PR to broadcast xR. The received signal at Si, i ∈ 1, 2 is given by:

ySi = hi
√

PRxR + ni (4)

where PR = 2E
T = ηρ(|h1|2P1 + |h2|2P2), ni∼CN

(
0, σ2

i
)

, i = 1, 2, is the noise generated at source Si.
For the noise components in the source and relay nodes, it is reasonable to assume σ2

1 = σ2
2 = σ2

b = σ2.
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Finally, the source node Si, i ∈= {i, 2} decodes xR and derives the information from Sj, j ∈
{1, 2|j 6= i} by using its own information. For example, S1 decodes the information from S2 as
x2 = xR ⊕ x1.

2.2. Performance Metric

The network outage probability is used as the performance metric. The outage probability of the
network we considered is defined as the probability that the achievable instantaneous received rate
pair (R12, R21) falls below an outage rate pair threshold (Rth1, Rth2). The achievable instantaneous
received rate pair is constrained by the achievable rate regions D, which can be obtained by using
the results in [14] (Refer to Equations (37)–(39) in reference [14]). The rate region is mathematically
expressed as:

D =
{
(R12, R21)|0 ≤ R12 ≤ min(R1R, RR2),

0 ≤ R21 ≤ min(R2R, RR1), R12 + R21 ≤ RMA

} (5)

where Rij, i, j ∈ [1, 2, R] denotes the end-to-end transmission rate from node i to node j, RMA denotes
the MA information transfer rate region. The transmission rate Rij, i, j ∈ [1, 2, R] and RMA can be
calculated by Rij =

1
2 log2(1 + γij) and RMA = 1

2 log2(1 + γMA), respectively, where γij, γMA are the
related signal-to-noise ratios (SNR).

From Equations (3) and (4), we can obtain the SNR of each transmission as the following equations:

γ1R = (1− ρ)αk1 (6a)

γR2 = |h2|2ηρ(αk1 + (1− α)k2) (6b)

γ2R = (1− ρ)(1− α)k2 (6c)

γR1 = |h1|2ηρ(αk1 + (1− α)k2) (6d)

γMA = (1− ρ)(αk1 + (1− α)k2) (6e)

where k1 = |h1|2Pt
σ2 , k2 = |h2|2Pt

σ2 , α is the power allocation ratio and P1 = αPt, P2 = (1− α)Pt.
With the required target transmission rate threshold Rth1 and Rth2 at the receiving nodes S1 and

S2, respectively, the outage probability can be expressed as:

Pout = Pr
[
(Rth1, Rth2) 6∈ D

]
= Pr

[
R12<Rth1

]
∪ Pr

[
R21<Rth2

]
∪ Pr

[
RMA<Rth1+Rth2

]
= Pr

[
min(R1R, RR2) < Rth1

]
∪ Pr

[
min(R2R, RR1) < Rth2

]
∪ Pr

[
RMA<Rth1+Rth2

]
= Pr

[
min(γ1R, γR2) < γth1

]
∪ Pr

[
min(γ2R, γR1) < γth2

]
∪ Pr

[
γMA < γthΣ

]
= Pr

[
min

(
γ1R

γth1
,

γR2

γth1
,

γ2R

γth2
,

γR1

γth2
,

γMA

γthΣ

)
< 1

]
(7)

where γthi = 22Rthi − 1, i = 1, 2, γthΣ = 22(Rth1+Rth2) − 1.
Denote FX(·) as the cumulative distribution function (CDF) of a random variable X. We can

rewrite Equation (7) as:
Pout = FΛ(1). (8)
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where:

Λ=min
(

γ1R

γth1
,

γR2

γth1
,

γ2R

γth2
,

γR1

γth2
,

γMA

γthΣ

)
=min

(
(1−ρ)αk1

γth1
,
|h2|2ηρ(αk1+(1− α)k2)

γth1
,

(1− ρ)(1− α)k2

γth2
,
|h1|2ηρ(αk1+(1− α)k2)

γth2
,

(1−ρ)(αk1 + (1− α)k2)

γthΣ

)
.

(9)

2.3. Problem Formulation

Our goal is to provide insights into the optimal PS at the relay and the optimal PA at each source
node for the proposed SWIPT-TWR network to minimize the network outage probability derived in
Equation (7). That is, the optimization problem is formulated as:

OP0: (αo, ρo) = arg min
α, ρ

Pout(α, ρ) (10)

subject to 0 < α < 1 and 0 < ρ < 1.

With the available instantaneous channel state information (CSI), it is more desirable to formulate
an equivalent joint optimization problem, which aims at maximizing the normalized SNR Λ shown in
Equation (9). This transformed optimization problem is expressed as:

OP1: (αo, ρo) = arg max
α, ρ

Λ(α, ρ) (11)

subject to 0 < α < 1 and 0 < ρ < 1.

Since Λ is a complex minimization function of two variables α and ρ, it is very difficult, if not
impossible, to solve for a solution directly based on the optimization formed in (11), but Λ(α, ρ) in
Equation (9) is observed to be a concave function of ρ for a fixed α. This observation leads to a two-step
approach to solve this joint resource allocation problem, which is developed in the next section.

3. A Two-Step Optimization Algorithm

To solve Equation (11) effectively, we adopt a successive approach to transform the original
problem into two subproblems. First, an optimal PS ratio is obtained by fixing α. Then, the resulting
PS ratio is substituted into Equation (11) to derive a closed-form solution of the optimal PA ratio
through case studies. This kind of method, which transforms a complex original problem into a series
of easily-solved convex problems, is a typical non-convex problem solution, which has been widely
used in solving mathematical problems [15] and solving formulated optimization problems applied in
communication scenarios [16].

For a fixed α, the optimization problem reduces to a one-dimensional problem related to the
power splitting ratio ρ. For ∀α, the optimization problem can be expressed as:

OP2: ρo = arg max
ρ

Λ(ρ) (12)

subject to 0 < ρ < 1.

where Λ(ρ) is rewritten as:

Λ(ρ) = min
(
(1− ρ)g1(α), ρg2(α)

)
(13)
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and g1(α), g2(α) are expressed as:

g1(α) = min
(

αk1

γth1
,
(1− α)k2

γth2
,

αk1 + (1− α)k2

γthΣ

)
(14a)

g2(α) = min
(
|h2|2
γth1

,
|h1|2
γth2

)
· [η(αk1 + (1− α)k2)] (14b)

It is easy to notice that Equation (13) is a convex function of ρ for a given α. Thus, the optimal ρ

derived from Equation (13) is obtained when (1− ρ)g1(α) = ρg2(α), i.e.,

ρo =
g1(α)

g1(α) + g2(α)
. (15)

Note that ρo is a function of α. Substituting Equation (15) into Λ leads to a one-dimensional
function of α written as:

Λ(α) =
g1(α)g2(α)

g1(α) + g2(α)
. (16)

The optimal power allocation ratio αo can be obtained by maximizing Equation (16), which is
equivalent to minimizing its reciprocal transformation Λ̄(α) =

(
1

g1(α)
+ 1

g2(α)

)
. The transformed

problem is written as follows.

OP3: αo = arg min Λ̄(α) (17)

= arg min
(

1
g1(α)

+
1

g2(α)

)
subject to 0 < α < 1

Equation (17) shows that the optimal αo is determined by g1(α) and g2(α). Define the three
components of g1(α) in Equation (14a) as f1 = αk1/γth1, f2 = (1− α)k2/γth2 and f3 = (αk1 + (1−
α)k2)/γthΣ. Let α12, α13 and α23 be, respectively, the points of intersection of f1 and f2, f1 and f3 and
f2 and f3. The analytical expression of Λ̄(α) can be classified as two cases, which is shown in the
following Theorem 1.

Theorem 1. Λ̄(α) is a continuous piecewise function and can be divided into two cases dependent on the size of
α13 and α23. The two cases are:

Case 1: When α13 ≥ α23:

Λ̄(α) =

{
1
f1
+ 1

v · (αk1 + (1− α)k2)
−1, 0 < α ≤ α12

1
f2
+ 1

v · (αk1 + (1− α)k2)
−1, α12 ≤ α < 1

(18)

Case 2: When α13 < α23:

Λ̄(α) =


1
f1
+ 1

v · (αk1 + (1− α)k2)
−1, 0 < α ≤ α13

1
f3
+ 1

v · (αk1 + (1− α)k2)
−1, α13 ≤ α ≤ α23

1
f2
+ 1

v · (αk1 + (1− α)k2)
−1, α23 ≤ α < 1

(19)

where v = η ·min
(
|h2|2
γth1

, |h1|2
γth2

)
,
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α12 =
k2γth1

k1γth2 + k2γth1

α13 =
k2γth1

k1(γthΣ − γth1) + k2γth1

α23 =
k2(γthΣ − γth2)

k2(γthΣ − γth2) + k1γth2

(20)

Proof. The proof is given in Appendix A.

It can be concluded that the monotony of f3 = (αk1 +(1− α)k2)/γthΣ, g2(α) = v · (αk1 +(1− α)k2)

has a relationship with the size of k1 and k2. When k1 = k2, f3 and g2(α) are constant; when k1 >

k2, f3 and g2(α) are monotonically increasing functions of α; and when k1 < k2, f3 and g2(α) are
monotonically decreasing functions of α. Thus, the monotony of Λ̄(α) for each case in Theorem 1 has
three subcases. With the above analysis, we analyze OP3 with case studies.

3.1. Case 1: α13 ≥ α23

In this case, Λ̄(α) is a continuous two-segment piecewise function generated from Equation (18),
With the size of k1 and k2, Λ̄(α) and OP3 have three subcases, which are analyzed as follows.

3.1.1. Subcase 1: k1 = k2

In this subcase, g2(α) is a constant for all values of α; thus, the variation of Λ̄(α) is determined
by f1 or f2. From Equation (18), it is easy to get that, in the range of α ∈ (0, α12], Λ̄(α) = f1

−1 + v−1 ·
(αk1 + (1− α)k2)

−1 is a decreasing function of α; and in the range of α ∈ (α12, 1), Λ̄(α) = f2
−1 + v−1 ·

(αk1 + (1− α)k2)
−1 is an increasing function of α. Thus, in this subcase, Λ̄(α) is non-negative convex,

which gets its minimum at α = α12. The solution of OP3occurs at α = α12.

3.1.2. Subcase 2: k1 > k2

In this subcase, g2(α) is an increasing function, and f3 does not affect Λ̄(α). Through analysis,
Lemma 1 can be obtained as follows.

Lemma 1. The optimal power allocation of Subcase 2 is unique and lies in the range of α ∈ [α12, 1], which can
be calculated by αo = α∗case1 = max(α∗, α12). α∗ is the stationary point of the second segment of Λ̄(α), which is
obtained by solving (Λ̄(α))′ = ( f2

−1 + v−1 · (αk1 + (1− α)k2)
−1)′ = 0, and the solved α∗ is:

α∗ =

√
k2(k1 − k2)− k2

√
vγth2√

k2(k1 − k2) + (k1 − k2)
√

vγth2
(21)

Proof. With the former analysis that g1(α) is a non-negative convex function with its maxima at
α = α12 and g2(α) is an increasing function in this subcase, it is easy to see that Λ̄(α = α12) is the
minima in the range of α ∈ [0, α12]. Given Λ̄(α12) as the initial value of Λ̄ in the range of α ∈ [α12, 1],
the variation of Λ̄(α) in the range α ∈ [α12, 1] is analyzed as follows. There is the conclusion that
g1(α) = f1 decreases as α increases and g2(α) increases as α increases in the range of α ∈ [α12, 1].
This characteristic leads to the conclusion that the optimal value of Λ̄ occurs in the range of [α12, 1].
In this range, Λ̄(α) = 1

f2
+ 1

g2
. The second-order derivative of Λ̄(α) given in Equation (22a) is greater

than zero; thus, the optimal α can be obtained by solving ∂Λ̄(α)
∂α =

[
1
f2
+ 1

v · (αk1 + (1− α)k2)
−1
]′

α
= 0.

The first-order derivative ∂Λ̄(α)
∂α is given in Equation (22b).
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∂2Λ̄(α)

∂α2 =
2γth 2

k2

1
(1− α)3 +

1
v

(k1 − k2)
2

(αk1 + (1− α)k2)4 (22a)

∂Λ̄(α)

∂α
=

γth2

k2

1
(1− α)2 −

1
v

k1 − k2

(αk1 + (1− α)k2)2 . (22b)

By solving Equation (22b), one obtains the minimum of [ 1
f2
+ 1

v · (αk1 + (1− α)k2)
−1]

′
α, which is

shown in Equation (21). Compared with the boundary value in the range of α ∈ [α12, 1], we get the
conclusion that if α∗ < α12, the optimal power allocation ratio is αo = α12; else, if α∗ ≥ α12, the optimal
power allocation ratio is αo = α∗. Rephrasing the above analysis results in Lemma 1.

3.1.3. Subcase 3: k1 < k2

In this subcase, g2(α) is a decreasing function and f3 does not affect Λ̄(α). Through analysis,
Lemma 2 can be derived as follows.

Lemma 2. The optimal power allocation of Subcase 3 is unique and lies in the range of α ∈ [0, α12], which can
be calculated by αo = α+

case1 = min(α+, α12). α+ is the stationary point of the first segment of Λ̄(α), which is
obtained by solving (Λ̄(α))′ = ( f1

−1 + v−1 · (αk1 + (1− α)k2)
−1)′ = 0, and the solved α+ is:

α+ =
k2
√

v · γth1√
k2 − k1(

√
k1 +

√
v · γth1(k2 − k1))

(23)

Proof. The convexity of this case can be verified using a similar analysis as Lemma 1. Given α12 as an
initial value, it is easy to see that g1(α) decreases as α decreases from this initial value; however, g2(α)

increases as α decreases from this initial value. This characteristic shows that the optimal value of
Λ̄(α) occurs in the range of [0, α12], where g1(α) = f1(α). Thus, Λ̄(α) = 1

f1
+ v−1 · (αk1 + (1− α)k2)

−1.
Since the second-order derivative of Λ̄(α) given in Equation (24a) is greater than zero, the optimal α

is obtained by letting the first derivative ∂Λ̄(α)
∂α = [ 1

f1
+ v−1 · (αk1 + (1− α)k2)

−1]
′
α expressed in (24b)

equal zero.

∂2Λ̄(α)

∂α2 =
2γth1

k1

1
α3 +

1
v

(k1 − k2)
2

(αk1 + (1− α)k2)4 (24a)

∂Λ̄(α)

∂α
= −γth1

k1

1
α2 −

1
v

k1 − k2

(αk1 + (1− α)k2)2 (24b)

By solving Equation (24b), one obtains the minimum of [ 1
f1
+ 1

v · (αk1 + (1− α)k2)
−1]

′
α, which is

shown in Equation (23). Compared with the boundary value in the range of α ∈ [0, α12], we get the
conclusion that if α+ < α12, the optimal power allocation ratio is αo = α+; else, if α+ ≥ α12, the optimal
power allocation ratio is αo = α12. Rephrasing the above analysis results in Lemma 2.

3.2. Case 2: α13 < α23

In this case, Λ(α) is generated from Equation (19), which is a three-segment continuous function.
Since f3 and g2(α) have a relationship with the size of the channel gains k1 and k2, the same as for Case
1, Case 2 has three subcases, as well.
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3.2.1. Subcase 1: k1 = k2

In this subcase, f3 and g2(α) are constants for all values of α. From Equation (19), it is easy to
get that, the first segment of Λ̄(α) is a decreasing function, the third segment of Λ̄(α) is an increasing
function and the second segment of Λ̄(α) is a constant. Thus, Λ̄ will get its minimum at ∀α ∈ [α13, α23].

3.2.2. Subcase 2: k1 > k2

In this subcase, f3 and g2(α) are monotonically increasing functions. Through analysis, Lemma 3
can be obtained as follows.

Lemma 3. The optimal power allocation for this subcase is unique and lies in the range of α ∈ [α23, 1), which
can be calculated by αo = α∗case2 = max(α∗, α23). α∗ is the stationary point of the third segment of Λ̄(α), which
is equivalent to that obtained in Equation (21).

Proof. Since f1 and f2 are respectively an increasing function and a decreasing function with the
increase of α, since f3 and g2(α) are monotonic functions in this subcase, it is easy to obtain that the
first and second segments of Λ̄(α) are decreasing functions. Due to the continuous feature, Λ̄(α = α23)

is the minima in the range of α ∈ [0, α23]. Given Λ̄(α23) as the initial value of Λ̄ in the range of
α ∈ [α23, 1], the variation of Λ̄(α) in the range of α ∈ [α23, 1] is analyzed as follows. In the range,
Λ̄(α) = 1

f2
+ 1

g2
. The second-order derivation and first-order derivation of Λ̄(α) can be obtained as

shown in Equations (22a) and (22b). α∗ is the minima of [ 1
f2
+ 1

v · (αk1 + (1− α)k2)
−1]

′
α, which is shown

in Equation (21). Compared with the boundary value in the range of α ∈ [α23, 1], we get the conclusion
that if α∗ < α23, the optimal power allocation value is αo = α23; else, if α∗ ≥ α23, the optimal power
allocation value is αo = α∗. Rephrasing the above analysis results in Lemma 3.

3.2.3. Subcase 3: k1 < k2

In this subcase, f3 and g2(α) are monotonically decreasing functions. Through analysis, Lemma 4
can be obtained as follows.

Lemma 4. The optimal power allocation for this subcase is unique and lies in the range of α ∈ (0, α13], which
can be calculated by αo = α+

case2 = min(α+, α13). α+ is the stationary point of the first segment of Λ̄(α), which
is equivalent to that obtained in Equation (23).

Proof. With monotonically decreasing functions of f3 and g2(α), the second and third segments of
Λ̄(α) are increasing functions. Due to the continuous feature, Λ̄(α = α13) is the minima in the range
of α ∈ [α13, 1]; whereas in the range of α ∈ [0, α13], Λ̄( 1

f1
) + 1

v · (αk1 + (1− α)k2). The second-order
derivation and first-order derivation of Λ̄(α) can be obtained as shown in Equations (24a) and (24b).
α+ is the minima of [ 1

f1
+ 1

v · (αk1 + (1− α)k2)
−1]

′
α, which is shown in Equation (23). Compared with

the boundary value in the range of α ∈ [0, α13], we get the conclusion that if α+ < α13, the optimal
power allocation value is αo = α+; else, if α+ ≥ α13, the optimal power allocation value is αo = α13.
Rephrasing the above analysis results in Lemma 4.

4. The Closed-Form of PA and PS

From the above analysis, the closed-form of optimal power allocation ratio αo is calculated and
presented below.

When α12 ≥ α23:

αo =


α12, if k1 = k2

α∗case1, if k1 > k2

α+
case1, if k1 < k2

(25)
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When α12 < α23:

αo =


∀α ∈ [α13, α23], if k1 = k2

α∗case2, if k1 > k2

α+
case2, if k1 < k2

(26)

Substituting αo into Equation (15), the optimal power splitting ratio is obtained below.

ρo =
g1(α

o)

g1(αo) + g2(αo)
(27)

Algorithm 1 summarizes the optimal power allocation ratio and power splitting ratio design for a
given set of η, |h1|2, |h2|2, Rth1, Rth2 and Pt.

Algorithm 1 Optimal joint resource allocation for αo, ρo.

1: Given η, |h1|2, |h2|2, Rth1, Rth2 and Pt

2: Compute k1 = |h1|2Pt
σ2 and k2 = |h2|2Pt

σ2

3: Compute α13, α23.
4: if α13 ≥ α23 then
5: if k1 = k2 then
6: αo = α12
7: else if k1 > k2 then
8: Compute α∗, α12
9: αo = α∗case1 = max(α∗, α12)

10: else if k1 < k2 then
11: Compute α+, α12
12: αo = α+

case1 = min(α+, α12)
13: end if
14: else if α13 < α23 then
15: if k1 = k2 then
16: αo = ∀αo ∈ [α13, α23]
17: else if k1 > k2 then
18: Compute α∗

19: αo = α∗case2 = max(α∗, α23)
20: else if k1 < k2 then
21: Compute α+

22: αo = α+
case2 = min(α+, α13)

23: end if
24: end if
25: Compute ρo = g1(α

o)
g1(αo)+g2(αo)

5. Numerical Results

In this section, some numerical and simulation results are presented to verify the proposed
algorithm and to assess the influence of various system parameters. To better display the superiority
of the proposed resource allocation scheme, three benchmark schemes: optimal α equal ρ, optimal
ρ equal α and equal α and ρ are presented as a comparison. The parameters are set as follows: the
energy conversion efficiency is set to be η = 0.8; the distance between the two sources is d = 10;
the noise power is set to be σ2 = −90 dBm; the channel gains are set to be |hi| = |gi| · (1 + di)

−m,
where gi ∼ CN (0, λi) represents the Rayleigh fading coefficient; di is the distance between Si and R;
m is the channel path loss exponent (m = 2); and λ1 = λ2 = 1. All results are generated from 104

channel realizations.
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Figure 2 depicts the effects of total power constraint on the system outage probability with rate
threshold (Rth1, Rth1) = (1, 1) bit/s/Hz. Since Algorithm 1 shows that the asymmetry of the channel
affects the optimal parameters, and thus further affects the outage performance, this simulation chose
two channel conditions to assess the system performance: symmetric channel condition d1 = d2 =

5 m (the left figure); asymmetric channel condition (d1, d2) = (3, 7) m (the right figure). Note that
(d1, d2) = (3, 7) is just a case of the asymmetric channel condition, which we chose to reflect the
system performance; relay deployments of (d1, d2) = {(1, 9), (2, 8), (4, 6), · · · } are asymmetric channel
conditions, as well. From this figure, we can see that the outage probability decreases with the increase
of total power constraint Pt. Pout of the proposed jointly optimal resource allocation obtained by using
the proposed Algorithm (A1) matches precisely with that obtained by using numerical search (NS)
over the range of α ∈ [0, 1] (step size of 0.005). The Pout of three benchmark schemes are presented,
as well, which verified that the proposed jointly optimal resource allocation scheme outperforms the
three benchmark schemes. The advantage of the proposed schemes is more obvious when the channel
is asymmetric.
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Equal α and ρ
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Figure 2. Comparison of outage performance vs. the total power constraint of different resource
allocation schemes: (a) (d1, d2) = (5, 5) (the left figure); (b) (d1, d2) = (3, 7) (the right figure).

Figure 3 shows the system outage probabilities Pout versus the relay deployment. For relay
deployment, the distance between source S1 and relay R (d1) is used as the x-axis. Simulation
parameters are set as: γt = 15 dBm (the left figure) or γt = 20 dBm (the right figure), (Rth1, Rth1) =

(1, 1) bit/s/Hz. It is observed that increasing the distance between source S1 and relay (i.e., d1) leads
to a concave characteristic of the outage probability. This behavior shows that the outage performance
is much better when the relay is close to any of the source nodes than when the relay is in the middle
of the two sources. It can be also noted that compared with the other three benchmark schemes,
the proposed scheme has the best outage performance when the channels are asymmetric. When
the channel is symmetric, the proposed scheme has the same outage performance as the scheme
optimal ρ equal α. This is because when the channels are symmetric, the optimal α is equal to α with
(Rth1, Rth1) = (1, 1) bit/s/Hz. Thus, to better enhance the system performance, the relay should be
deployed close to each of the source nodes.
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Figure 3. Comparison of the outage performance vs. the distance between source S1 and relay R (d1)
of different schemes: (a) Pt = 15 dBm (the left figure); (b)Pt = 20 dBm (the right figure).

Figure 4 shows the outage performance Pout versus the rate threshold Rth1 with setting
Rth2 = 1 bit/s/Hz. The simulation evaluates two situations: (a) the target transmit power is
Pt = 15 dBm (the left figure); (b) the target transmit power is Pt = 20 dBm (the right figure). The relay
is deployed at d1 = 3 m and d2 = 7 m. It is observed that as Rth1bit/s/Hz increases, the outage
probability becomes worse. This is because with the increase of the threshold rate, the achievable rate
region is more prone to less than the rate threshold. Thus, the outage probability increases based on
Equation (7). This figure also shows that the jointly optimal resource allocation scheme outperforms
the other three benchmark schemes with any of the threshold settings.
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Figure 4. Comparison of outage performance vs. the rate threshold Rth1 of different schemes:
(a) Pt = 15 dBm (the left figure); (b) Pt = 20 dBm (the right figure).
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6. Conclusions

We have derived a joint optimal resource allocation design for DF-TWR networks with SWIPT
to minimize its system outage probability. The optimization of such a network is a very complex
problem. To make it easy to tackle, a two-step method is proposed. With the two-step method, the
optimal PS ratio for a given PA ratio is derived first, from which it is found that it is a function of
the PA ratio. Then, the obtained PS ratio is substituted back into the main optimization problem to
determine the closed-form of the optimal PA ratio. Simulation results matched the analytical results
well and confirmed that the optimized system achieved a lower outage probability than existing
schemes, especially in asymmetric channel conditions.
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Abbreviations

DF Decode-and-forward
SWIPT Simultaneous wireless information and power transfer
PS Power splitting
PA Power allocation
CSI Channel state information
TWR Two-way relay
AF Amplify-and-forward
EH Energy harvesting
MA Multiple access
BC Broadcast
ID Information decoding
SNR Signal-to-noise ratio
CDF Cumulative distribution function
CSI Channel state information

Appendix A

From Equations (14a) and (14b), we obtain that 1
g1(α)

= max
( γth1

αk1
, γth2
(1−α)k2

, γthΣ
αk1+(1−α)k2

)
and 1

g2(α)
=

v−1 · (αk1 + (1− α)k2). Denote q1(α) =
γth1
αk1

, q2(α) =
γth2

(1−α)k2
, q3(α) =

γthΣ
αk1+(1−α)k2

; it is easy to get that
q1(α) and q2(α) are, respectively, an increasing function and a decreasing function in the range of
α ∈ [0, 1]. q3(α) is either constant or a monotonic function depending on the relative values of k1 and
k2 in the range of α ∈ [0, 1]. The domain boundary values of qi, i ∈ {1, 2, 3} are calculated as:

q1(0) = +∞, q1(1) =
γth1
k1

q2(0) =
γth2
k2

, q2(1) = +∞

q3(0) =
γthΣ
k2

, q3(1) =
γthΣ
k1

(A1)

Since γthΣ > γth1 and γthΣ > γth2, q1(α), q2(α) and q3(α) have three intersection points in the
range α ∈ [0, 1]: α12, α13 and α23, where αij, i, j ∈ {1, 2, 3} are the intersections of qi and qj. Since
qi = f−1

i , the intersections of qi and qj are the same as the intersection of fi and f j. When α13 ≥ α23,
max(q1, q2) is always larger than q3, which results in g1(α), as shown in Equation (18); when α13 < α23,
any of the segments f1 and f2 might be less than f3 in some certain range, which results in g1(α),
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as shown in Equation (19). On the other hand, 1
g2(α)

is a monotonic function of α; thus, we can get

Λ(α) = 1
g1(α)

+ 1
g2(α)

, as shown in Equations (14a) and (14b) for these two cases. Theorem 1 is proven.
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