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Data-driven Predictive Control for Continuous-time Linear Parameter
Varying Systems with Application to Wind Turbine
Xiaosuo Luo

Abstract: A new data-driven predictive control method based on subspace identification for continuous-time linear
parameter varying (LPV) systems is presented in this paper. It is developed by reformulating the continuous-time
LPV system which utilizes Laguerre filters to obtain the subspace prediction of output. The subspace predictors are
derived by QR decomposition of input-output and Laguerre matrices obtained by input-output data. The predictors
are then applied to design the model predictive controller. It is shown that the integrated action is incorporated in
the control effect to eliminate the steady-state offset. We control the continuous-time LPV systems to obtain the
attractive performance with the proposed data-driven predictive control method. The proposed controller is applied
to a wind turbine to verify its effectiveness and feasibility.

Keywords: Continuous-time, data-driven approach, linear parameter varying systems, model predictive control,
subspace identification.

1. INTRODUCTION

The linear parameter varying(LPV) systems become
more attractive than before and they can be seen as a
particular type of time-varying system. The LPV mod-
els can be used to approximate nonlinear systems with
much lower system order but higher precision than lin-
ear model approximations. Moreover, the LPV models
allow the extension of linear design techniques to nonlin-
ear systems [1]. Because of these advantages, there are
many researches in LPV systems [2–4]. A number of LPV
model applications have emerged, including wind turbines
[5], biomedical applications [6], and leakage detection
[7]. As industrial processes grow increasingly complex,
continuous-time systems have grown increasingly com-
mon (e.g., continuous rolling process, aircraft flight pro-
cesses [8, 9]) and are difficult to model due to the high
level of complexity, necessitating continuous-time iden-
tification methodology. Generally, the continuous-time
identification falls into two distinguish categories: The in-
direct approach and direct approach [10]. The indirect ap-
proach basically view the situation at two points: First by
using a non-parametric model like impulse response, step
response or frequency response function. Second step is
to estimate continuous time parameters from the estimated
discrete time model. The drawbacks of the indirect ap-
proach are that the sampling time is difficult to select and
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zero pole conversion is not consistent. In contrast, the di-
rect approach often approximates the derivative operator
that is associated with input and output signal using a filter
to identify the continuous-time models directly. The direct
approach shows superior performance and is, accordingly,
a more popular research focus [11].

Subspace identification is one available system identifi-
cation algorithm for state-space modeling, through which
workers engaged in automation do not need to perform
tedious mechanism modeling and the accurate state-space
model can be obtained once there is enough process input-
output data [12, 13]. Subspace identification for LPV sys-
tems has obtained considerable attention. Vincent and
Verhaegen [14, 15] presented subspace identification for
multivariable LPV state-space systems with affine param-
eter dependence and kernel methods for reducing dimen-
sions in LPV systems. In [16], the periodic scheduling
sequence is used from LTI subspace identification to de-
termine the column space of the time-varying observabil-
ity matrices. The open- and closed-loop data can be well
solved through subspace identification of LPV systems in
[17]. The subspace identification of continuous-time sys-
tems has been studied in a number of contributions. In
[18] an approach for system identification of continuous-
time stochastic state space models from random input-
output continuous data was presented. The approach is
based on the introduction of random distribution theory in
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describing (higher) time derivatives of stochastic pro-
cesses, and the input-output algebraic relationship is de-
rived which is treated in the time-domain. Wu et al.
[19] solved the continuous-time identification for errors-
in-variables based on the linear filter method and principal
component analysis. Bergamasco and Lovera [20] dealt
with the problem of continuous-time model identification
and presented two subspace-based algorithms capable of
dealing with data generated by systems operating in closed
loop. These methods only solve the identification prob-
lem, but in this study, we obtain the appropriate subspace
predictors using continuous-time subspace identification
for LPV systems to design an innovative predictive con-
troller.

Model predictive control (MPC) is a powerful model
based control technique, which explicitly optimizes the
overall performance of a system to be controlled [21].
There are several attractive features of MPC; e.g., it han-
dles multivariable control problems naturally, it consid-
ers input and output constraints, and it adapts structural
changes [22]. By combining the merits of subspace iden-
tification and MPC, data-driven predictive control was
formed [23–26]. It is a powerful technique which exploits
subspace identification to design continuous-time model
predictive controllers in LPV systems. Importantly, this
is the first paper to our knowledge to report a data-driven
predictive control for continuous-time LPV systems.

The primary contribution of this study is that we are
able to obtain key subspace predictors to design the model
predictive controller in a continuous-time LPV system.
The system is first transformed into the Laguerre form
to obtain the subspace prediction of the output via recur-
sive substitution, then through RQ factorization, the sub-
space predictors are obtained from the R matrix as-derived
from input-output and Laguerre matrices. The incremen-
tal form of the cost function is then constructed in MPC
and the subspace predictors are incorporated to obtain the
control input. A seven-degrees-of-freedom wind turbine
model is used to verify the performance of the proposed
control method; excellent control performance is observed
as evidenced by simulation results.

The outline of the paper is arranged as follows. We
start in Section 2 with the subspace prediction of output.
In Section 3, we give the data-driven predictive control
method. In Section 4 the simulation example is presented
that shows the potential of the proposed method. Section
5 ends with the conclusions.

2. SUBSPACE PREDICTION OF OUTPUT

Consider the LPV system described by continuous-time
form:

x(t +1) = A(t)x(t)+B(t)u(t)+w(t), (1)

y(t) =C(t)x(t)+D(t)u(t)+ v(t), (2)

where u(t) ∈ Rl , y(t) ∈ Rm, and x(t) ∈ Rn are input, out-
put, and state vectors respectively. The time varying sys-
tem matrix is now given by

A(t) =
m

∑
i=1

A(i)µ (i)(t) (3)

and B(t), C(t), and D(t) are similar to A(t). The matrices
A(i) ∈ Rn×n, B(i) ∈ Rn×l , C(i) ∈ Rm×n, D(i) ∈ Rm×l . The
model weights µ (i)

t ∈R. w(t)∈Rn and v(t)∈Rm are zero-
mean white Gaussian sequences with covariance matrix:

E
[(

w(t)
v(t)

)
(w(t)T v(t)T)

]
=

[
Q S
ST R

]
δi j, (4)

where δi j is Kronecker delta.

2.1. Continuous-time prediction of output
The i-th continuous-time Laguerre filter is given by

Li(s) =
√

2p
(s−a)i

(s+a)i+1 , (5)

where a > 0 is the scaling factor to ensure that the filters
are stable. Define a w-operator that corresponds to the all-
pass Laguerre filter which has the form

w(s) =
s−a
s+a

. (6)

Through multiplication, the system can be transformed
as follows [27],

[wx̂](t) = Awx̂(t)+Bw[l0u](t)+ [l0ww](t)+K1x0l0(t), (7)

[l0y](t) =Cwx̂(t)+Dw[l0u](t)+ [l0vw](t)+K2x0l0(t), (8)

where

Aw = (A+aI)−1(A−aI),
Bw = (A+aI)−1B,
Cw = 2aC(A+aI)−1,
Dw = D−C(A+aI)−1B,
K1 = (A+aI)−1,
K2 =C(A+aI)−1,
ww(t) = (A+aI)−1w(t),
vw(t) = v(t)−C(A+aI)−1w(t),

(9)

and x0 is the initial state of the original continuous-time
system.

The subspace prediction output of the continuous-time
system can be derived by recursive substitution of (7)-(8):

Yi, j(t) = Γ jx(t)+H jUi, j(t)+Hs
jWi, j(t)+Vi, j(t)+FjΨi, j(t)

(10)

where

Yi, j(t) =


[liy](t)
[li+1y](t)

...
[li+ j−1y](t)

 , Γ j =


Cw

CwAw
...

CwA j−1
w

 ,
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H j =


Dw 0 · · · 0

CwBw Dw
. . .

...
...

. . . . . . 0
CwA j−2

w Bw · · · CwBw Dw

 ,

Hs
j =


0 0 · · · 0

Cw 0
. . .

...
...

. . . . . . 0
CwA j−2

w · · · Cw 0

 ,

Ui, j(t) =


[liu](t)
[li+1u](t)

...
[li+ j−1u](t)

 , Wi, j(t) =


[liww](t)
[li+1ww](t)

...
[li+ j−1ww](t)

 ,

Vi, j(t) =


[livw](t)
[li+1vw](t)

...
[li+ j−1vw](t)

 , Ψi, j(t) =


li(t)

li+1(t)
...

li+ j−1(t)

 ,

Fj =


K2x0 0 · · · 0

CwK1x0 K2x0
. . .

...
...

. . . . . . 0
CwA j−2

w K1x0 · · · CwK1x0 K2x0

 .

The above result is taken from the literature [20]. We next
derive the subspace prediction for LPV systems through
the proposed method for the sake of comparison.

2.2. Continuous-time prediction of output for LPV
systems

Define the output vector yd
t as

yd
t = [yT

t yT
t+1 · · · yT

t+d−1]
T (11)

and the input vector ud
t , the noise vector wd

t and vd
t are

similar to yd
t where d is defined as the window size. Define

the transition matrix ΦA(t, j) ∈ Rn×n for t > j :

ΦA(t, j) = At−1At−2 · · ·A j, (12)

where ΦA(t, t) = In, I is the identity matrix. The subspace
prediction of output with the LPV system can be derived
by recursive substitution of Eqs. (1)-(2):

yd
t = Γd

t xt +Hd
t ud

t + εd
t wd

t + vd
t (13)

with

Γd
t =


Ct

Ct+1ΦA(t +1, t)
...

Ct+d−1ΦA(t +d −1, t)

,

Hd
t =


Dt 0 · · · 0

hd
t,2,1 Dt+1

. . .
...

...
. . . . . . 0

hd
t,d,1 · · · hd

t,d,d−1 Dt+d−1

,

εd
t =


0 0 · · · 0

εd
t,2,1 0

. . .
...

...
. . . . . . 0

εd
t,d,1 · · · εd

t,d,d−1 0

,

where hd
t,i, j = Ct+i−1ΦA(t + i − 1, t + j)Bt+ j−1, εd

t,i, j =
Ct+i−1ΦA(t+i−1, t+ j) with i = 2, · · · ,d, j = 1, · · · ,d −1,
and i > j.

The system stability analysis can refer to “2.3 Statistical
framework” of paper [14].

To use the continuous-time subspace prediction of out-
put to design model predictive controller, define the pe-
riod is p and N samples in system. The transition matrix
ΦA(t, j) ∈ Rn×n for t > j is

ΦA(t, j) = Aw(t−1)Aw(t−2) · · ·Aw j (14)

and h
d
t,i, j = Cw(t+i−1)ΦA(t + i−1, t + j)Bw(t+ j−1), εd

t,i, j =

Cw(t+i−1)ΦA(t + i−1, t + j).
Equation (13) can be transformed as

Y t
i,d,N = Γd

t X t
i,N +Hd

t U t
i,d,N + εd

t W t
i,d,N +V t

i,d,N +Fd
t Ψt

i,d,N ,

(15)

where

Y t
i,d,N = [liyd

t+ip li+1yd
t+(i+1)p · · · li+N−1yd

t+(i+N−1)p],

U t
i,d,N = [liud

t+ip li+1ud
t+(i+1)p · · · li+N−1ud

t+(i+N−1)p],

W t
i,d,N = [liwd

w(t+ip) li+1wd
w[t+(i+1)]p · · · li+N−1wd

w[t+(i+N−1)p],

V t
i,d,N = [livd

w(t+ip) li+1vd
w[t+(i+1)]p · · · li+N−1vd

w[t+(i+N−1)p],

X t
i,N = [xt+ip xt+(i+1)p · · · xt+(i+N−1)p],

Ψt
i,N = [ld

t+ip ld
t+(i+1)p · · · ld

t+(i+N−1)p],

Γd
t =


Cwt

Cw(t+1)ΦA(t +1, t)
...

Cw(t+d−1)ΦA(t +d −1, t)

 ,

Hd
t =


Dwt 0 · · · 0

h
d
t,2,1 Dw(t+1)

. . .
...

...
. . . . . . 0

h
d
t,d,1 · · · h

d
t,d,d−1 Dw(t+d−1)

 ,

εd
t =


0 0 · · · 0

εd
t,2,1 0

. . .
...

...
. . . . . . 0

εd
t,d,1 · · · εd

t,d,d−1 0

 ,

Fd
t =


K2x0 0 · · · 0

CwtK1x0 K2x0
. . .

...
...

. . . . . . 0
∆1 · · · ∆2 K2x0

 .



622 Xiaosuo Luo

where ∆1 = Cw(t+d−2)ΦA(t + d − 2, t)K1x0, ∆2 =
Cw(t+d−2)K1x0.

3. DATA-DRIVEN PREDICTIVE CONTROL

In this section, we first derive the applicable subspace
predictors for continuous-time LPV systems using the
subspace prediction discussed in Section 2.2.

Construct the following instrumental variable matrix
WN :

W t+p−d
N =

[
U t+p−d

0,d,N

Y t+p−d
0,d,N

]
, (16)

where

U t+p−d
0,d,N =


l0ut+p−d l0ut+2p−d · · · l0ut+N−d

l1ut+p−d+1 l1ut+2p−d+1 · · · l1ut+N−d+1
...

. . . . . .
...

ld−1ut+p−1 ld−1ut+2p−1 · · · ld−1ut+N−1

 ,

Y t+p−d
0,d,N =


l0yt+p−d l0yt+2p−d · · · l0yt+N−d

l1yt+p−d+1 l1yt+2p−d+1 · · · l1yt+N−d+1
...

. . . . . .
...

ld−1yt+p−1 ld−1yt+2p−1 · · · ld−1yt+N−1

 .

The U t
1,d,N and Y t

1,d,N are represented similarly with
U t+p−d

0,d,N and Y t+p−d
0,d,N .

The instrumental variable matrix Ψt
1,d,N is as:

Ψt
1,d,N =


lt+p lt+2p · · · lt+N

lt+p+1 lt+2p+1 · · · lt+N+1
...

. . . . . .
...

lt+p+d−1 lt+2p+d−1 · · · lt+N+d−1

 . (17)

Take the RQ factorization:
Ψt

1,d,N

W t+p−d
N

U t
1,d,N

Y t
1,d,N

= RTQT

=


Rt

11 0 0 0
Rt

21 Rt
22 0 0

Rt
31 Rt

32 Rt
33 0

Rt
41 Rt

42 Rt
43 Rt

44




QT
1

QT
2

QT
3

QT
4

 .

(18)

The optimal prediction Ŷ t
1,d,N can be found from the or-

thogonal projection of the row space of Y t
1,d,N onto the row

space of the matrix

 Ψt
1,d,N

W t+p−d
N

U t
1,d,N

:

Ŷ t
1,d,N = Y t

1,d,N/

 Ψt
1,d,N

W t+p−d
N

U t
1,d,N

 . (19)

The optimal prediction Ŷ t
1,d,N also can be written as

Ŷ t
1,d,N = Lt

wW t+p−d
N +Lt

uU
t
1,d,N , (20)

where Lt
w is the subspace predictor that corresponds to the

past input-output data and Lt
u is the subspace predictor that

corresponds to the future input data.
Through the implementation of the orthogonal projec-

tion, by letting[
Lt

w Lt
u

]
=
[

Rt
41 Rt

42 Rt
43

][ Rt
21 Rt

22 0
Rt

31 Rt
32 Rt

33

]†

,
(21)

where superscript † represents the Moore-Penrose pseudo-
inverse. We can get the Lt

w and Lt
u.

Next, consider an apparent incremental form of the cost
function which has an integrated action to eliminate the
steady-state offset [23].

J =
N2

∑
k=1

(rt+k − ŷt+k|t )
2 +

Nu

∑
j=1

λ (∆ut+ j−1)
2

= (r f − ŷ f )
T(r f − ŷ f )+∆uT

f (λ I)∆u f ,
(22)

where N2 and Nu are the prediction and control horizon re-
spectively, rt+k is the reference setpoint signal at the cur-
rent time t + k , λ is the weighting on the control effort.
The vector of the optimal prediction of the future outputs
can be expressed in terms of the future inputs and current
states as

ŷ f = Fyt +L◦
w(1 : N2m, :)∆wp +SN2,Nu ∆u f , (23)

where ŷ f =
[

ŷt+1 · · · ŷt+N2

]T, F =
[

Im · · · Im
]T,

SN2,Nu = Lu(1 : N2m,1 : Nul)


Il 0 · · · 0
Il Il · · · 0
...

...
. . .

...
Il Il · · · Il

. L◦
w is

constructed from Lt
w as

L◦
w(m(k−1)+1 : mk, :)

=
k
∑

i=1
Lt

w(m(i−1)+1 : mi, :),
(24)

where 1 ≤ k ≤ N2. Substituting the optimal prediction of
the future outputs in (23) into the cost function in (22),
differentiate it with respect to ∆u f and control sequence
can be obtained:

∆u f =
(
ST

N2,Nu
SN2,Nu +λ I

)−1
ST

N2,Nu
∆3, (25)

where ∆3 = (r f −Fyt −L◦
w(1 : N2m, :)∆wp).

At each time instance, only the first element of ∆u f is
used for calculating the control input. Therefore the con-
trol input ut is drawn as

ut = ut−1 +∆ut . (26)
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Table 1. The circuit framework of proposed method.

1. Construct the LPV system described by continuous-
time form as (1)-(2).
2. Obtain the continuous-time subspace prediction of
output with (10).
3. Get the continuous-time subspace prediction of output
for LPV systems with (15).
4. Computer the subspace predictors Lt

w and Lt
u with (21).

5. Derive the vector of the optimal prediction ŷ f of
model predictive controller with (23).
6. Implement the control input u using Eqs. (25)-(26).
7. At the next time, when new data arrives, the following
control input can be calculated using above steps.

 

Fig. 1. The diagram of the wind turbine model.

At the next time sample, we measure the new input-
output data and the new control input will be calculated
using above procedure.

For the sake of clarity, the circuit framework of pro-
posed method is summarized in Table 1.

4. SIMULATION EXAMPLE

The example is a wind turbine of seven degrees of free-
dom as described in [28, 29]. The model describes the
rotational dynamics of a wind turbine around a particular
operating point. The model contains degrees of freedom
for one of the main rotation, two of first torsion mode of
the drive train, two of the first fore-aft, and two of side-
ward bending mode of the tower. In the model, the blades
are considered to be rigid. The diagram of the model is
shown in Fig. 1.

The system has three rotor blades and can be linearized
described in the following continuous-time LPV form:

ẋ = Ax+[B(1)+
3

∑
i=1

B(i+1)φ (i)]u+[F (1)+
3

∑
i=1

F (i+1)φ (i)]v,

(27)

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
The eigenvalues of identified LPV system

 

 

root locus

true pole

identified pole

 

Fig. 2. The eigenvalues of A(i) matrices of the wind tur-
bine.

y = [C(1)+
3

∑
i=1

C(i+1)φ (i)]x+Du+Gv. (28)

The system input vector, output vector, state
vector, and disturbance vector are given as: u =
[u1 u2 u3 u4]

T = [σθ1 σθ2 σθ3 σTge]
T, y =

[y1 y2 y3 y4 y5 y6]
T = [σΩge ẋ f a ẋsw σM1 σM2 σM3]

T,
x = [σΩro x f a ẋ f a xsw ẋsw ε ε̇]T, v = [σv1 σv2 σv3]

T,
where σθi is the pitch angle variation, σTge is the genera-
tor torque, σΩge is the variation in generator speed, σMi

is the blade root bending moment, σΩro is the variation
in rotor speed, x f a and ẋ f a are the fore-aft displacement
and velocity respectively, xsw and ẋsw are the sideward
displacement and velocity respectively, ε and ε̇ are the
drive-train displacement and speed respectively, σvi is the
wind speed disturbance.

The constant state-space matrices A, D, G and the LPV
state-space matrices B, C , F can be seen in [30], the aero-
dynamic constants are listed in [29].

The identification step is given to verify the model ac-
curacy. The parameters are defined as follows, The sample
time t = 0.1 s, the samples N = 1000 , the period p = 10,
and the window size d = 10 . The eigenvalues of A(i) ma-
trices of the wind turbine are shown in Fig. 2.

It can be seen as a satisfactory model. To test the cross
validation, the standard variance-accounted-for(VAF) is
used. The VAF is often used to verify the correctness of
a model, by comparing the real output with the estimated
output of the model [31]. The VAF is defined as

VAF = max{1− var(yk − ŷk)

var(yk)
,0}×100, (29)

where yk and ŷk are the values at instant k of process and
model output respectively.
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Table 2. The VAF of LPV and LTI identified model.

Identified method LPV LTI
VAF 86.1013 62.0634
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Fig. 3. The tracking performance of y1.

The average VAF of VAF can be represented as

VAF =

m
∑

k=1
VAFk

m
. (30)

The LTI(Linear Time Invariant) method of subspace
identification in [32] is introduced as a comparison. The
VAF on the validation data set can be seen in Table 2. We
can get from (29) that with the increase of VAF, the model
is more satisfactory. The cross validation results indicate
that the LPV identified model is more accurate than LTI
identified model.

Then, the identified LPV model is used to design the
continuous-time data-driven predictive controller. The pa-
rameters of the controller are tuned as follows. The pre-
diction horizon N2 = 30 and the control horizon Nu = 20.
The weighting λ = 0.2. Take the first 10000s for sim-
ulation validation. There are six outputs in this system.
In the setpoint test, the performance of outputs using the
proposed control method expresses satisfactory results as
shown in Figs. 3-8.

For comparison, the LTI data-driven predictive
controller(LTI-DPC) in [33] is used to control this sys-
tem. Here 15000s is conducted, in the y4 tracking test, Rf
is defined as the reference output. The parameters of this
controller are same as above proposed controller(we just
call it LPV-DPC). As shown in Fig. 9, from about 3001s
to 13000s, since the nonlinear character, the y4 with the
LTI-DPC can not achieve tracking the reference setpoint
well. For the sake of clarity, a form of prediction error ξ
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Fig. 4. The tracking performance of y2.
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Fig. 5. The tracking performance of y3.
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Fig. 6. The tracking performance of y4.

is conducted to verify the performance of output:

ξ =

√√√√√√√
N
∑

i=1
(yi − yp

i )
2

N
∑

i=1
(yi)

2
∗100, (31)
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Fig. 7. The tracking performance of y5.
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Fig. 8. The tracking performance of y6.
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Fig. 9. The response comparison of y4 tracking perfor-
mance.

where yi and yp
i are the values at instant i of reference and

process output respectively. We get the results of Table 3
below from Fig. 9. The performance of output using the
LPV-DPC expresses better comparing with the LTI-DPC.

Table 3. The prediction error of LTI-DPC and LPV-DPC
methods.

Control method LTI-DPC LPV-DPC
Prediction error ξ 3.2434 2.4416

5. CONCLUSIONS

In the article, we presented a continuous-time subspace
based data-driven predictive control method for linear pa-
rameter varying(LPV) systems. The time varying matrices
and Laguerre filters are used to get the subspace predic-
tion of output through recursive substitution. Then, the
data-driven predictive controller applied to LPV systems
is designed using the subspace predictors which can be
obtained from subspace prediction of output. The method
was implemented on a wind turbine example to verify the
effectiveness.
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