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Abstract- A successive approximation approach (SAA) is developed to obtain a new congestion 

controller for the singularly perturbed time-delay networked control systems affected by external 

disturbances. Based on the slow-fast decomposition theory of singular perturbations, the system is first 

decomposed into a fast non-delay subsystem and a slow time-delay subsystem with disturbances. Then, 

the perturbation approach is proposed to solve the slow-time scale time-delay optimal control problem, 

and the feedforward compensation technique is used to reject the external disturbances. We obtain the 

conditions of existence and uniqueness of the feedforward and feedback composite control (FFCC) law. 

The FFCC law consists of linear analytic functions and a time-delay compensation term which is a 

series sum of adjoint vectors. The linear analytic functions can be found by solving a Riccati matrix 
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equation and a Sylvester equation respectively. The compensation term can be approximately obtained 

by an iterative formula of adjoint vector equations. A reduced-order disturbance observer is constructed 

to make the FFCC law physically realizable. Numerical examples are presented to illustrate the 

effectiveness and robustness of the proposed design approach. 

 
Index terms: Successive approximation approach, congestion controller, networked control systems, two-

point boundary value problems, time-delay. 

 

I. INTRODUCTION 

 

It is well known that the insertion of the network in the feedback control loop makes the analysis 

and design of a networked control systems complex because the network imposes an 

undetermined communication delay [1-3]. The change of communication architecture from point-

to-point to network, however, introduces different forms of time delay uncertainty between these 

devices. Delays are widely known to degrade the performance of a control system, so there has 

been a lot of research on networked control systems to reduce the performance degradation 

caused by delays. In Ref. [4], the author studied the effect of delays on the system modeling, and 

then a new optimal controller was designed to control the plant, however, the controller only 

considered the constant delay. In Ref. [5], the author utilized clock synchronization technology to 

evaluate the delays online, and then a LQR optimal controller based on the obtained delays was 

adopted to stabilize the plant, but the implementation of the controller caused some performance 

degradation. In Ref. [6], a fuzzy logic controller was used to control the networked control 

systems, which regretfully didn’t use the communication information in design of controller. Ref. 

[7] proposes a new method to obtain a maximum allowable delay bound for a scheduling of 

networked control systems. The proposed method is formulated in terms of linear matrix 

inequalities and can give a much less conservative delay bound.  

Since networked control systems are an integrated research area, which is not only concerned 

about control, but also relevant to communication, we must combine the knowledge of control 

and communication together to improve the system performance. Following this direction, in this 

paper, we address a novel scheme that integrates control technology with communication 

technology for a class of bilinear discrete-time networked control systems [8]. 
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The rest of the paper is organized as follows. Section 2 presents the description of the problems 

and main assumptions. Section 3 will prove the existence and uniqueness of the two-point 

boundary value (TPBV) law. Section 4 discusses the detailed design scheme and algorithm of 

optimal control law for bilinear networked control systems. The validity of the laws will be 

illustrated by numerical examples in Sections 5. Conclusions are presented in Section 6.  

 

II. PROBLEM FORMULATION 

 

We consider the networked control systems consisting of a collection of bilinear plants whose 

feedback control loops are closed via a shared network link, as illustrated in Figure 1. All sample 

values of plant states are transmitted in one package [9-12]. 

Control Network (TCP/IP)

OPC Server
Data accessControl Builder

Controllers

IO I/O Fieldbuses

Intra-net

 
Figure 1. A collection of networked control systems shared by a communication link 

 

The i-th plant (i = 1, …, N) is given by 
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where ( ) nx t R∈  and ( ) mz t R∈  are the state vectors, ( ) ru t R∈  is the control input, τ  is the 

positive time-delay, ε  is the small positive perturbation parameter, and ( )tϕ  is the continuously 

differentiable initial function, , ( 1, 2; 1,2,3)ij iA B i j= =  and D  are the constant matrices of 

appropriate dimensions, pv R∈  is the disturbances generated by the exosystem 

( ) ( )
( ) ( )

w t Gw t
v t Lw t

=
=

&
                                                              (2) 

where G  and L  are the constant matrices of appropriate dimensions. 

Assumption 1.  The pair ( , )G L   is observable completely. 

Assumption 2. For the case of infinite-horizon, the real parts of all eigenvalues of G are non-

positive. Moreover, the eigenvalues with zero real part are simple roots of minimum polynomial 

of the matrix G . 

Remark 1. Exosystem (2) represents varieties of external disturbances. Assumption 2 ensures 

that the exosystem is critically stable or asymptotically stable. 

The finite-horizon quadratic performance index is given by [13-14] 

0

( ) ( ) ( ) ( )1 1 ( ) ( )
( ) ( ) ( ) ( )2 2

f

T T
tf f T

f f

x t x t x t x t
J F Q u t Ru t dt

z t z t z t z t

⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟= + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎝ ⎠

∫             (3) 

where R  is the positive definite matrix, F and Q  are the positive semi-definite matrices with the 

block diagonal structures as 1 2

32
T

F F
F

FF
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

and 1 2

32
T

Q Q
Q

QQ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

with 1 1, n nF Q R ×∈  , 2 2, n mF Q R ×∈   

and 3 3, m mF Q R ×∈ . Without loss of generality, we assume that 2 0F =  and 2 0Q =  in the 

following discussion. Our objective is to find the optimal control u∗  such that the quadratic 

performance index (3) is minimized. 

In view of the slow-fast decomposition theory of singular perturbation, the optimal problem (1) 

and (3) can be decomposed into the two optimal sub-problems.  The slow time scale one is given 

by 
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and 
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The fast time scale optimal sub-problem is given by 

22 2

0

( ) ( ) ( ), 0

(0) (0)
f f f

f s

z t A z t B u t t

z z z

ε = + >

= −
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                                     (7) 

and 

3 30

1 1( ) ( ) ( ) ( ) ( ) ( )
2 2

ftT T T
f f f f f f f f fJ z t F z t z t Q z t u t Ru t dt⎡ ⎤= + +⎣ ⎦∫                  (8) 

where 1
22 21 23 2( ) [ ( ) ( ) ( )]s s s sz t A A x t A x t B u tτ−= − + − + . The fast time scale optimal control law is 

given by 
1

2( ) ( ) ( )T
f f fu t R B P t z t∗ −= −                                                            (9) 

where ( )fP t  satisfies the Riccati  differential equation  

2 22 22 3

3

( ) ( ) ( ) ( ) ( ) , 0

( )

T
f f f f f f

f f

P t P t S P t A P t P t A Q t t

P t F

= − − − ≤ <

=

&
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with 1
2 2 2

TS B R B−= .  

The slow time scale optimal control of system (4) with subject to quadratic performance index (5) 

is given by [15-19] 
1

0( ) [ ( ) ( )]T
s s s s su t R D x t B tλ∗ −= − +                                                  (11) 

where ( ) n
s t Rλ ∈  satisfies TPBV problem[20-21] 
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Note that TPBV problem (12) contains both delay and advance terms, obtaining the exact 

analytic solution of this problem is, in general, extremely difficult. It means that the optimal 

control ( )su t∗  is difficult to obtain. Consequently, the composite control ( )cu t  of the original 

optimal problem (1) and (3) is impossible to obtain. 

 

III. SIMPLIFICATION OF THE TPBV PROBLEM  

 

To simplify TPBV problem(12), we introduce a perturbation parameter δ . Construct a new 

TPBV problem with δ  as follows: 

3 0( , ) ( , ) ( , ) ( , ) ( )

( , ) ( , ) ( , ) ( , )
( , ) ( ), 0
( , ) 0

s s s s s
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s s s s s

s
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t
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δ ϕ τ
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=

&

&
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and a new optimal control law of the form 
1

0( , ) [ ( , ) ( , )]T
s s s s su t R D x t B tδ δ λ δ−= − +                                              (15) 

Assume that the solution to the new TPBV problem (14) uniquely exists for any 1δ ≤ . Note that 

for 1δ = , TPBV problem (14) is equivalent to that in (12), and the control law (15) becomes (11). 

We also assume that ( , ), ( , )s su t x tδ δ  and ( , )s tλ δ are infinitely differentiable with respect to δ  

at 0δ = , and their Maclaurin  series in δ  can be written as 
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where ( )
0( ) ( )i i i

s s ζα α δ == ∂ ∂ . We assume that the series sum in (16) is convergent at 1δ =  in 

the following discussion. When 1δ = , the optimal control law in (16) can be rewritten of the form 
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0

1( ) ( )
!

i
s s

i
u t u t

i

∞

=

=∑                                                             (17) 

Substituting (16) into (14) and (15) and comparing the coefficients of the same order terms with 

respect to δ , we obtain 
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Through above transformation, the TPBV problem (12) is constructed into a series of TPBV 

problems(18). In the i -th TPBV problem, the delay and the advance terms are independent on the 

i -th variables. Therefore, the i -th TPBV problem is inhomogeneous, linear, without delay and 

advance terms. All the TPBV problems could be found by using an iterative process. 
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IV. APPROXIMATION PROCESS OF FINITE-HORIZON FFCC LAW 

 

In this section, we will discuss in detail the design process of finite-horizon FFCC law via the 

perturbation method, and prove the existence and uniqueness of the infinite-horizon FFCC law. 

Theorem 1: For the optimal control problem described by (1) and (3), there exists the unique 

FFCC law with the form as 

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ( ) ( ) ( )]c x z c wu t K t x t K t z t K t x t K t P t w t g tτ τ ∞= + + − + +          (21) 
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where rI  is the identity matrix of dimension r , ( )fP t  and ( )sP t  are the unique positive semi-

definite solutions of Riccati differential equations (10) and 
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( )wP t  is the unique solution of matrix differential equation 
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and ( ) ( )ig t  is the unique solution of vector differential equation end-point problem 
( ) ( ) ( 1) ( )

0 3 1

( )

(0)

( ) [ ( ) ] ( ) ( ) ( ) ( )

( ) 0, 1, 2,

( ) 0, 0

i T i i i
s s s

i
f

f

g t S P t A g t iP t A x t t

g t i

g t t t

τ σ−= − − − −

= =

= ≤ <

&

L                             (25) 

with 
( 1) ( 1)

3( )
1

[ ( ) ( ) ( )], 0
( )

0,

T i i
s fi

f f

iA P t x t g t t t
t

t t t

τ τ τ τ
σ

τ

− −⎧ + + + + ≤ ≤ −⎪= ⎨
− < <⎪⎩

                       (26) 

and ( ) ( )ix t  satisfies 
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Proof. Let 
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Substituting (29) into (18) and(19), we easily obtain the i -th state equation of the slow 
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Taking the derivative to the both sides of (29), together with (30), we get 
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Substituting (29) into the second equation of (18) and comparing with (32), one can obtain the 

Riccati differential equation (23), Sylvester matrix differential equation (24) and adjoint vector 

differential equations: 
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By solving matrix differential equation end-point problems(23), (24), we get ( )sP t  and ( )wP t , 

respectively. Further, we obtain ( ) ( )ig t  from (33). Consequently, the optimal control of the i -th 

slow subsystem is determined uniquely by (31). Hence, from (16), (17) and (31), we obtain 
1 1 1 ( )

0 0 0( ) [ ( )] ( ) ( ) ( ) ( )T T T
s s s s s s w su t R D B P t x t R B P t w t R B g t∗ − − − ∞= − + − −                 (34) 

On the other hand, from (9) and (10), we get the optimal control law of the fast subsystem. 

Further, by replacing ( )sx t  with ( )x t  and ( )fz t  with ( ) ( )sz t z t−  in (9) and (34), we can directly 

obtain the composite control law ( )cu t  expressed by (21). Also, by replacing ( )sx t  with ( )x t  in 

(33) and (30), we obtain (25) and  (27). The proof is complete. 

 

V. INFINITE-HORIZON FFCC LAW 

 

In this section, we will discuss in detail the design process of infinite-horizon FFCC law via the 

perturbation method, and prove the existence and uniqueness of the infinite-horizon FFCC law. 

We know that if the exosystem is critically stable as ft →∞ , then the disturbances v  will tend to 

oscillation with constant amplitudes, and the state vector x  and the control vector u  are 

impossible to tend to zero contemporaneously. Therefore, the quadratic performance index 

0
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∫                                        (35) 

 may not be convergent. In this case, we can choose quadratic average performance index as 

0
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f
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t
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z t z tt→∞
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∫                             (36) 

It is necessary to emphasize here that when the exosystem is asymptotically stable, quadratic 

performance index (35) is available, and the analysis process of corresponding FFCC law is 

similar to the case of choosing the quadratic average performance index. 

In order to prove the existence and uniqueness of the FFCC law, the following Lemma is useful. 

Lemma 1. Assume that , ,m m n n n mH R E R L R× × ×∈ ∈ ∈% % % , then Sylvester  matrix equation 

0EX XH L+ + =% % %                                                        (37) 
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has unique solution X  if and only if 0λ μ+ ≠  for any ( )Eλ σ∈ %  and ( )Hμ σ∈ %  with )(⋅σ  

denoting spectra of matrix. 

Theorem 2: Consider the optimal control problem of the standard linear time-delay singularly 

perturbed system (1) with subject to infinite-horizon quadratic average performance index (36). 

Assume that: 

The triples 1/ 2
22 2 3( , , )A B Q  and 1/ 2

0 0( , , )sA B Q  are controllable-observable completely; 

The Assumption 2 holds. 

Then there exists the unique FFCC law ( )cu t  formulated as 
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with 
1 1

2 22 23

1 1
22 2 0

1 1 1
22 21 22 2 0

,

( )

( ) ( )

T
z f z

T
c r z s

T
x z r z s s s

K R B P K K A A

K I K A B R B

K K A A I K A B R D B P

τ
− −

− −

− − −

= − =

= − +

= − + +

                           (39) 

sP   and fP are the unique positive definite solutions of the algebraic Riccati  equations 
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s s s s s s sA P P A P S P Q+ − + =                                                  (40) 

and 

22 22 2 3 0T
f f f fA P P A P S P Q+ − + =                                              (41) 

wP  is the unique solution of the Sylvester  matrix equation 

0( ) 0T
s s w w sA P S P P G P H− + + =                                               (42) 

( ) ( )ig t  satisfies the adjoint state vector differential equation 

( ) ( ) ( 1) ( )
0 3 0

( )

(0)

( ) ( ) ( ) ( ) ( )

lim ( ) 0, 1, 2,

( ) 0, 0
f

i T i i i
s s s

i
ft

g t S P A g t iP A x t t

g t i

g t t

τ σ−

→∞

= − − − −

= =

= ≥

&

L                         (43) 

with 
( 1) ( 1)

3( )
0

[ ( ) ( )], 0
( )

0,

T i i
s fi

f f

iA P x t g t t t
t

t t t

τ τ τ
σ

τ

− −⎧ + + + ≤ ≤ −⎪= ⎨
− < <⎪⎩

                     (44) 

and  
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( )( ) ( ) ( )
0 1 0

0

( )

(0)

( ) ( ) ( ) ( ) ( )
[1 sgn( )]( ) ( ), 0,1,2, ; 0

( ) 0, 1, 2, ; 0
( ) ( ), 0

ii i i
s s

w

i

x t A S P x t t S g t
i H S P w t i t

x t i t
x t t t

γ

τ

ϕ τ

= − + −
+ − − = >

= = − ≤ ≤

= − ≤ ≤

&

L

L
                  (45) 

Proof. Let 
( ) ( ) ( )( ) ( ) [1 sgn( )] ( ) ( ), 0,1, 2,i i i
s s s wt P x t i P w t g t iλ = + − + = L                    (46) 

Proceeding in a manner similar to that of the case of finite-horizon in section 3.2, we obtain (38), 

(40), (41), (42), (43) and (45), which are analogs of (21), (23), (10), (24), (25) and (27), 

respectively. 

In the following, we only need to prove the existence and uniqueness of FFCC law (38). 

Obviously, it is equivalent to the existence and uniqueness of the solutions to algebraic Riccati  

matrix equations (40), (41) and Sylvester  matrix equation (42).  

Note that the triples 1/ 2
0 0( , , )sA B Q  and 1/ 2

22 2 3( , , )A B Q are controllable-observable completely, 

then algebraic Riccati  matrix equations (40) and (41) have unique positive definite solutions sP  

and fP . From the regulator theory of linear system, it follows that for any 0( )s sA S Pζ σ∈ − , the 

inequality Re 0ζ <  holds. In view of Assumption 2,  Re 0μ ≤  holds for any ( )Gμ σ∈ . Thus, by 

Lemma 1, Sylvester  matrix equation (42) has the unique solution wP . The proof is complete. 

 

VI. PHYSICALLY REALIZABLE PROBLEM OF THE FFCC LAW 

 

In this section, we construct a reduced-order disturbances observer to make the FFCC laws 

physically realizable, and the design algorithm is also presented in the sense of the practical 

engineering. 

The optimal control law ( )cu t  in (38) contains the unknown state variable ( )w t of exosystem (2), 

which is physically unrealizable. In the practical engineering, we can introduce a disturbances 

observer to make it physically realizable.  

We now construct a reduced-order observer for the state of the exosystem. It is well known that 

for the full rank matrix L  in exosystem (2), there exists a constant matrix ( )q p qL R − ×∈  such that 

the matrix T T q qL L R ×⎡ ⎤∈⎣ ⎦  is nonsingular. Let 
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[ ]
1

1 121
1 2

21 2

,
G GL

T T T TGT
G GL

−

− ⎡ ⎤⎡ ⎤
= = = ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

                                 (47) 

where 1
q pT R ×∈ , ( )

2
q q pT R × −∈ , 1

p pG R ×∈ , ( )
12

p q pG R × −∈ , ( )
21

q p pG R − ×∈  and ( ) ( )
2

q p q pG R − × −∈  are 

constant matrices. In order to construct a disturbances observer, we make the equivalent linear 

transformation w Tw= . Denote that 1 2[ ]T T Tw w w= , where 1
pw R∈ , and ( )

2
q pw R −∈ . An equivalent 

system of the exosystem is obtained as follows 

1 1 1 12 2

2 21 1 2 2

1

( ) ( ) ( )
( ) ( ) ( )

( ) ( )

w t G w t G w t
w t G w t G w t
v t w t

= +

= +
=

&

&                                                     (48) 

where 1( )w t  is just the external disturbance vector ( )v t . We need only construct a reduced-order 

observer with respect to 2 ( )w t . Note that 0pLT I⎡ ⎤= ⎣ ⎦  and the pair ( , )G L  is completely 

observable, obviously the pair 2 12( , )G G  is also completely observable. Construct the reduced-

order observer as follows 

2

ˆ ˆ( ) ( ) ( )
( ) ( ) ( )
t G t Lv t

w t t Kv t
η η

η
= +
= +

&
                                                        (49) 

where q pRη −∈  is a constructed variable, 2 ( )w t  is the observing value of 2 ( )w t , K  is an 

undetermined coefficient matrix, and 

2 12

2 12 21 1

ˆ

ˆ
G G KG

L G K KG K G KG

= −

= − + −
                                        (50) 

In order to guarantee the speediness and nicety of observer (49), we can select matrix K  such 

that all the eigenvalues of matrix 2 12G KG−  are assigned to appointed places. From (2), (47) and 

(48), we can get the observing value of ( )w t  as follows 

2 1 2ˆ ( ) ( ) ( ) ( )w t T t T T K v tη= + +                                             (51) 

By above reconstruction of ( )w t , the FFCC law in (38) can be expressed as 
( )ˆ( ) ( ) ( ) ( ) [ ( ) ( )]c x z c wu t K x t K z t K x t K P w t g tτ τ ∞= + + − + +                         (52) 

where ˆ ( )w t is determined by (49) and (51). 

Remark 2. In (52), the action of the term ( ) ( )cK g t∞  is to compensate the unfavorable effect 

derived from the time-delay, while ˆ ( )c wK P w t  compensates the effect caused by the external 
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disturbances. Especially, if 0wP = , then we can obtain feedback composite control (FCC) law of 

the form 
( )( ) ( ) ( ) ( ) ( )c x z cu t K x t K z t K x t K g tτ τ ∞= + + − +                                      (53) 

If system (1) is in the absence of external disturbances, namely, ( ) 0v t ≡ , then (53) also 

represents the composite suboptimal control (CSC) law of the singularly perturbed time-delay 

system. 

Remark 3. In practical applications, by replacing ∞  with suitable integer M  in (52) and (53), 

we obtain respectively the approximate FFCC law and  FCC (or CSC) law as follows: 

ˆ( ) ( ) ( ) ( ) [ ( ) ( )]M x z c w Mu t K x t K z t K x t K P w t g tτ τ= + + − + +                         (54) 

( ) ( ) ( ) ( ) ( )M x z c Mu t K x t K z t K x t K g tτ τ= + + − +                                          (55) 

where ( )

1
( ) ( ( ) !)

M
i

M
i

g t g t i
=

= ∑ . Further, from (54) we can get the recursion formula of dynamic 

approximate FFCC law: 

( )
1

0

( ) ( ) ( ), 1, 2, ,
!

ˆ( ) ( ) ( ) ( ) ( )

ic
i i

x z c w

Ku t u t g t i M
i

u t K x t K z t K x t K P w tτ τ

−= + =

= + + − +

L
                             (56) 

Similarly, for FCC (or CSC) law (55) we have 

( )
1

0

( ) ( ) ( ), 1, 2, ,
!

( ) ( ) ( ) ( )

ic
i i

x z

Ku t u t g t i M
i

u t K x t K z t K x tτ τ

−= + =

= + + −

L
                                        (57) 

Remark 4. For finite-horizon FFCC law (21), there are similar results to that of (52)-(57). 

In fact, the iteration times M  in (56) and (57) can be determined by the given tolerance error 

bound α , 0 1α< < . We now give the design algorithm as follows. 

Algorithm 1. FFCC law of system (1) 

Step 1: Calculate the matrices ,s fP P  and wP  from (40), (41)and (42) respectively, 0 ( )u t  from the 

second equation in (56). 

Step 2: Give the tolerance error bound α . Let 0, 1M i= = . Obtain ( )x t  by substituting 0 ( )u t  

into system (1), and then calculate 0J  from the following equation 

 
0

( ) ( )1lim ( ( )) ( )
( ) ( )

f

f

T
t T

M M Mt
f

x t x t
J Q u t Ru t dt

z t z tt→∞

⎧ ⎫⎡ ⎤ ⎡ ⎤⎪ ⎪= +⎨ ⎬⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭

∫                         (58) 
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Step 3: Obtain ( ) ( )ig t from (43), ( )iu t  from the first equation in (56), then obtain ( )x t by 

substituting ( )iu t  into system (1). 

Step 4: Let M i= , and then calculate MJ  from (58). 

Step 5: If 1( ) /M M MJ J J α−− < , then stop and output ( )Mu t . Or else, find the state vector ( ) ( )ix t  

from (45). 

Step 6:  Letting 1i i= + , go to Step 3. 

 

VII. NETWORKED CONTROL LOOP 

 

To demonstrate the feasibility and effectiveness of the proposed method, numerical examples are 

carried out in figure 2. 

 
Figure 2. True time model of networked control loop 

 

We consider linear singularly perturbed time-delay system with the specific matrices: 



Hua Tong, Peng Liu, Study on the Congestion Controller for Time-Delay Networked Control Systems with External 
Disturbances  

874 
 

11 12 13

21 22 23

1 2

0.5 1 -2 0.1 1 0.3
, , ,

0 -0.5 1 2 0 -1

-0.4 0.5 0.5 0 0 0.2
, ,

0 -0.4 0.1 0.5 0.1 0.05

0.1 1.5 0 0
, ,

0 1 2 1

A A A

A A A

D B B

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

                           (59) 

The initial conditions are given by 

[ ]
[ ]

( ) 1 0.5 , 0.2 0

(0) 0 2

T

T

t t

z

ϕ = − ≤ ≤

= −
                                          (60) 

Exosystem (2) is critically stable. Let 

0 3 0 0
1 0 0 0

0 0 0 1
0 0 3 0

cG

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎣ ⎦

                                                              (61) 

The quadratic performance index is chosen as 

1

0
3

0( ) ( )
( ) ( )

( ) ( )0
f

T
t TQx t x t

J u t Ru t dt
Qz t z t

⎧ ⎫⎡ ⎤⎡ ⎤ ⎡ ⎤⎪ ⎪= +⎨ ⎬⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎣ ⎦⎪ ⎪⎩ ⎭

∫                       (62) 

The corresponding slow state variables 1 2,x x , and the fast state variables 1 2,z z  are presented in 

Figs.3-4, respectively, where the solid lines for the suboptimal trajectories of the FFCC, while the 

dash-dotted lines for the FCC. 
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Figure 3. Results without interference 

 
Figure 4. Results with interference 
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From Fig. 3 and Fig. 4, we can see clearly that the perturbation method proposed in this paper is 

valid for the optimal control problem for the singularly perturbed time-delay systems, and 

preserves very good convergence.  

 

VIII. CONCLUSIONS 

 

In this paper, the decision-making law has been studied for the singularly perturbed time-delay 

networked control systems affected by external disturbances. The optimization problem of the 

linear time-delay singularly perturbed systems is replaced by a non-delay sequence of the 

singularly perturbed optimization problems via the perturbation method, and the feedforward and 

feedback optimal control technique is used to reject the external disturbances. This method 

avoids ill-defined numerical TPBV problem and reduces the size of computations. On the other 

hand, it is shown that the FFCC laws proposed are effective and easy to implement, and more 

robust with respect to external disturbances. 
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